3.已知函數(shù)f(x)=x(2lnx-ax)有兩個極值點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,0)B.(0,$\frac{1}{2}$)C.(0,1)D.(0,+∞)

分析 f(x)=2xlnx-ax2(x>0),f′(x)=2lnx+2-2ax.令g(x)=lnx+1-ax,由于函數(shù)f(x)=x(2lnx-ax)有兩個極值點(diǎn)?g(x)=0在區(qū)間(0,+∞)上有兩個實(shí)數(shù)根,求出g(x)的導(dǎo)數(shù),當(dāng)a≤0時,直接驗(yàn)證;當(dāng)a>0時,利用導(dǎo)數(shù)研究函數(shù)g(x)的單調(diào)性可得:當(dāng)x=$\frac{1}{a}$時,函數(shù)g(x)取得極大值,故要使g(x)有兩個不同解,只需要g($\frac{1}{a}$)=ln$\frac{1}{a}$>0,解得即可.

解答 解:f(x)=2xlnx-ax2(x>0),f′(x)=2(lnx+1-ax),
令g(x)=lnx+1-ax,
∵函數(shù)f(x)有兩個極值點(diǎn),則g(x)=0在區(qū)間(0,+∞)上有兩個實(shí)數(shù)根,
g′(x)=$\frac{1-ax}{x}$,
當(dāng)a≤0時,g′(x)>0,則函數(shù)g(x)在區(qū)間(0,+∞)單調(diào)遞增,
因此g(x)=0在區(qū)間(0,+∞)上不可能有兩個實(shí)數(shù)根,應(yīng)舍去;
當(dāng)a>0時,令g′(x)=0,解得x=$\frac{1}{a}$,
令g′(x)>0,解得0<x<$\frac{1}{a}$,此時函數(shù)g(x)單調(diào)遞增,
令g′(x)<0,解得x>$\frac{1}{a}$,此時函數(shù)g(x)單調(diào)遞減,
∴當(dāng)x=$\frac{1}{a}$時,函數(shù)g(x)取得極大值,
當(dāng)x趨近于0與x趨近于+∞時,g(x)→-∞,
要使g(x)=0在區(qū)間(0,+∞)上有兩個實(shí)數(shù)根,則g($\frac{1}{a}$)=ln$\frac{1}{a}$>0,解得0<a<1,
∴實(shí)數(shù)a的取值范圍是(0,1),
故選:C.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值,考查了等價轉(zhuǎn)化方法,考查了推理能力和計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(1)若函數(shù)f(x)=lnx-ax有極值,則函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,$\frac{1}{a}$);
(2)若函數(shù)g(x)=xlnx-$\frac{1}{2}$ax2-x有極值,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+$\frac{a}{x}-\frac{x}{3}$,其中a∈R.
(Ⅰ)當(dāng)a=$\frac{2}{3}$時,求f(x)的零點(diǎn)的個數(shù);
(Ⅱ)若函數(shù)g(x)=xf(x)-a+$\frac{2-3a}{6}$x2-x有兩個極值x1,x2,且x1<x2,求證:lnx1+lnx2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知矩陣A=$({\begin{array}{l}2&{-5}\\ 9&1\end{array}})$,B=$({\begin{array}{l}1&{10}\\{-2}&1\end{array}})$,則A-2B=$(\begin{array}{l}{0}&{-25}\\{13}&{-1}\end{array})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若冪函數(shù)f(x)=xm+1在區(qū)間(0,+∞)是單調(diào)減函數(shù),則實(shí)數(shù)m的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,其中a>0.
(1)求函數(shù)f(x)的極值:
(2)若函數(shù)h(x)=f(x)-1在區(qū)間[$\frac{1}{e}$,e]上有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)≥$\frac{1}{2}$,則f(x)<$\frac{x}{2}$+$\frac{1}{2}$的解集為( 。
A.{x|x<1}B.{x|x>1}C.{x|x<-1}D.{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.現(xiàn)有5人參加抽獎活動,每人依次從裝有5張獎票(其中3張為中獎票)的箱子中不放回地隨機(jī)抽取一張,直到3張中獎票都被抽出時活動結(jié)束,則活動恰好在第4人抽完后結(jié)束的概率為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,已知直線L參數(shù)方程為:$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$(s為參數(shù))和曲線C:y2=x相交于A、B兩點(diǎn),則|AB|=$3\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案