【題目】如圖,在梯形中,,,,是的中點,將沿折起得到圖(二),點為棱上的動點.
(1)求證:平面平面;
(2)若,二面角為,點為中點,求二面角余弦值的平方.
【答案】(1)見證明;(2)
【解析】
(1)根據(jù),證得平面,從而證得平面平面.(2)以,,所在直線為,,軸,建立空間直角坐標(biāo)系,通過計算和的法向量,計算出二面角余弦值的平方.
證明:(1)在圖(一)梯形中,
∵是的中點,,,
∴,.
∴四邊形為平行四邊形.
又∵,∴,
在圖(二)中,∵,,平面,平面,
∴平面,
又∵平面,∴平面平面.
解:(2)由及條件關(guān)系,得,
由(1)的證明可知,,
∴為二面角的平面角,
∴,
由(1)的證明易知平面平面,且交線為,
∴在平面內(nèi)過點作直線垂直于,
則平面,
∴,,兩兩相互垂直,
∴分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系,
則,,,,
∵為中點,
∴,
,.
設(shè)平面的一個法向量,
則 ,
即,
令,則,,
∴,
而平面的一個法向量,
∴ ,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB⊥AD,AB⊥BC,側(cè)面SAB⊥底面ABCD,且SA=SB=AB=BC=2,AD=1.
(1)設(shè)E為棱SB的中點,求證:AE⊥平面SBC;
(2)求平面SCD與平面SAB所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求點C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,中國某省的一個地區(qū)社會民間組織為年齡在30歲-60歲的圍棋愛好者舉行了一次晉級賽,參賽者每人和一位種子選手進(jìn)行一場比賽,贏了就可以晉級,否則,就不能晉級,結(jié)果將晉級的200人按年齡(單位:歲)分成六組:第一組,第二組,第三組,第四組,第五組,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.
(1)求實數(shù)的值;
(2)若先在第四組、第五組、第六組中按組分層抽樣共抽取10人,然后從被抽取的這10人中隨機(jī)抽取3人參加優(yōu)勝比賽.
①求這三組各有一人參加優(yōu)勝比賽的概率;
②設(shè)為參加優(yōu)勝比賽的3人中第四組的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長均為2,底面側(cè)面, , 為的中點, .
(1)證明: .
(2)若是棱上一點,滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前n項和為,,公差為
若,求數(shù)列的通項公式;
是否存在d,n使成立?若存在,試找出所有滿足條件的d,n的值,并求出數(shù)列的通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市高中某學(xué)科競賽中,某區(qū)名考生的參賽成績的頻率分布直方圖如圖所示.
(1)求這名考生的平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點值作代表);
(2)記分以上為合格,分及以下為不合格,結(jié)合頻率分布直方圖完成下表,能否在犯錯誤概率不超過的前提下認(rèn)為該學(xué)科競賽成績與性別有關(guān)?
不合格 | 合格 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若<<0,則下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正確的是( )
(A)①④ (B)②③ (C)①③ (D)②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com