設(shè)數(shù)學(xué)公式
(Ⅰ)求T2,T3,T4,試用n(n≥2)表示Tn的值.
(Ⅱ)用數(shù)學(xué)歸納法證明你的結(jié)論.

(Ⅰ)解:,,,…6分
猜想…8分
(Ⅱ)證明:(1)當(dāng)n=2時(shí)由(Ⅰ)可知成立 …10分
(2)假設(shè)n=k時(shí)結(jié)論成立,即,
那么,當(dāng)n=k+1時(shí),,…14分
所以當(dāng)n=k+1時(shí),命題也成立.
根據(jù)(1)(2)可知結(jié)論當(dāng)n≥2,n∈N時(shí)都成立. …16分.
分析:(Ⅰ)代入計(jì)算,可得T2,T3,T4,從而猜想Tn的值.
(Ⅱ)利用數(shù)學(xué)歸納法的證題步驟,即可證得結(jié)論.
點(diǎn)評(píng):本題考查數(shù)學(xué)歸納法,考查學(xué)生分析解決問(wèn)題軛能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-cos2x-4tsin
x
2
cos
x
2
+4t3+t2-3t+4,x∈R,其中|t|≤1,將f(x)的最小值記為g(t).
(1)求g(t)的表達(dá)式;
(2)對(duì)于區(qū)間[-1,1]中的某個(gè)t,是否存在實(shí)數(shù)a,使得不等式g(t)≤
4a
1+a2
成立?如果存在,求出這樣的a及其對(duì)應(yīng)的t;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達(dá)式;
(2)討論g(t)在區(qū)間[-1,1]內(nèi)的單調(diào)性;
(3)若當(dāng)t∈[-1,1]時(shí),|g(t)|≤k恒成立,其中k為正數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時(shí),曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時(shí)恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個(gè)數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù){an}滿足:a1=2t,t2-2tan-1+an-1an=0,n=2,3,4,…(其中t為常數(shù)且t≠0).
(I)求證:數(shù)列{
1an-t
}
為等差數(shù)列;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)bn=n•2nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•嘉定區(qū)三模)設(shè)復(fù)數(shù)z1=sinα+i,z2=m+(m-cosα)i,其中i為虛數(shù)單位,α∈[0,2π),m∈R,且z1=z2
(1)求α的值;
(2)設(shè)t=cosα+isinα,求f(t)=1+t+t2+…+tn-1(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案