【題目】已知函數(shù),其中為實數(shù).

1)求的單調(diào)區(qū)間;

2)若,則當(dāng)時,恒成立,求的取值范圍.

【答案】1)見解析;(2

【解析】

1)先求出函數(shù)的解析式,再對其求導(dǎo),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可求解;

2)先通過分類討論去掉絕對值,再將不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題,然后根據(jù)函數(shù)的單調(diào)性求出最值,則問題獲解.

解:(1)由題意得,

所以

所以時,恒成立,

即當(dāng)時,恒成立,

所以的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間.

當(dāng)時,令,得,

,得,

所以的單調(diào)遞增區(qū)間為

單調(diào)遞減區(qū)間為

綜上,當(dāng)時,的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間;

當(dāng)時,)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為

2)當(dāng)時,恒成立,

等價于當(dāng)時,恒成立.

①若

上單調(diào)遞減,

所以,所以

,與矛盾,故此時不存在.

②若

當(dāng)時,

上單調(diào)遞減,

所以,此時,符合題意.

當(dāng)時,

,則上恒成立,

所以上單調(diào)遞增,

所以當(dāng)時,,所以

所以上單調(diào)遞增,

所以,

所以,

所以

綜上,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:cm)落在各個小組的頻數(shù)分布如下表:

數(shù)據(jù)分組

[12.5,15.5

[15.5,18.5

[18.5,21.5

[21.5,24.5

[24.527.5

[27.5,30.5

[30.533.5

頻數(shù)

3

8

9

12

10

5

3

1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在[27.533.5]內(nèi)的概率;

2)求這50件產(chǎn)品尺寸的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

3)根據(jù)頻數(shù)分布對應(yīng)的直方圖,可以認(rèn)為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求.

附:(1)若隨機變量服從正態(tài)分布,則;(2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌布娃娃做促銷活動:已知有50個布娃娃,其中一些布娃娃里面有獎品,參與者可以先在50個布娃娃中購買5個,看完5個布娃娃里面的結(jié)果再決定是否將剩下的布娃娃全部購買,設(shè)每個布娃娃有獎品的概率為,且各個布娃娃是否有獎品相互獨立.

1)記5個布娃娃中有1個有獎品的概率為,當(dāng)時,的最大值,求;

2)假如這5個布娃娃中恰有1個有獎品,以上問中的作為p的值.已知每次購買布娃娃需要2元,若有中獎,則中獎?wù)呙看慰傻锚劷?/span>15.以最終獎金的期望作為決策依據(jù),是否該買下剩下所有的45個布娃娃;

3)若已知50件布娃娃中有10個布娃娃有獎品,從這堆布娃娃中任意購買5個,若抽到k個有獎品可能性最大,求k的值.k為正整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知可導(dǎo)函數(shù)fx)的定義域為,且滿足,則對任意的,“”是“”的( )

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,且點在底面上的投影H恰為CD的中點.

1)棱BC上存在一點N,使得AD⊥平面,試確定點N的位置,說明理由;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)討論的單調(diào)性;

2)若,當(dāng)時,求證:有兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術(shù),3名女選手分別表演歌唱、舞蹈和魔術(shù),若要求相鄰出場的選手性別不同且表演的節(jié)目不同,則不同的出場方式的種數(shù)為(

A.6B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)在定義域(0+∞)上是單調(diào)函數(shù),且x∈(0,+∞),ffx)﹣ex+x)=e.若不等式2fx)﹣f′(x)﹣3axx∈(0,+∞)恒成立,則a的取值范圍是(

A.(﹣∞,e2]B.(﹣∞,e1]C.(﹣∞,2e3]D.(﹣∞,2e1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,拋物線E頂點在坐標(biāo)原點,焦點為.以坐標(biāo)原點為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求拋物線E的極坐標(biāo)方程;

(Ⅱ)過點傾斜角為的直線lEMN兩點,若,求.

查看答案和解析>>

同步練習(xí)冊答案