【題目】已知動圓M與圓C1:(x+4)2+y2=2外切,與圓C2:(x﹣4)2+y2=2內(nèi)切,求動圓圓心M的軌跡方程.
【答案】解:設(shè)動圓圓心M(x,y),半徑為r,∵圓M與圓C1:(x+4)2+y2=2外切,與圓C2:(x﹣4)2+y2=2內(nèi)切,
∴|MC1|=r+ ,|MC2|=r﹣ ,
∴|MC1|﹣|MC2|=2 <8,
由雙曲線的定義,可得a= ,c=4;則b2=c2﹣a2=14;
∴點(diǎn)M的軌跡是以點(diǎn)C1 , C2為焦點(diǎn)的雙曲線的一支,
∴動圓圓心M的軌跡方程: ﹣
【解析】根據(jù)兩圓外切和內(nèi)切的判定,圓心距與兩圓半徑和差的關(guān)系,設(shè)出動圓半徑為r,消去r,根據(jù)圓錐曲線的定義,即可求得動圓圓心M的軌跡,進(jìn)而可求其方程.
【考點(diǎn)精析】通過靈活運(yùn)用雙曲線的概念,掌握平面內(nèi)與兩個定點(diǎn),的距離之差的絕對值等于常數(shù)(小于)的點(diǎn)的軌跡稱為雙曲線.這兩個定點(diǎn)稱為雙曲線的焦點(diǎn),兩焦點(diǎn)的距離稱為雙曲線的焦距即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直l的參數(shù)方程是(t是參數(shù))
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=,求直線的傾斜角α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cosx,C2:y=sin(2x+),則下面結(jié)論正確的是( 。
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角ABC中,角A、B、C所對的邊分別為a,b,c,b=4,c=6,且asinB=2 .
(1)求角A的大;
(2)若D為BC的中點(diǎn),求線段AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中, 是自然對數(shù)的底數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)減區(qū)間;
(3)若在恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且a,b,c成等比數(shù)列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判斷此時△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A,B,C,D在同一個球的球面上,AB=BC=2,AC=2 ,若四面體ABCD體積的最大值為 ,則該球的表面積為( )
A.
B.8π
C.9π
D.12π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家秦九韶所著《數(shù)學(xué)九章》中有“米谷粒分”問題:糧倉開倉收糧,糧農(nóng)送來米1512石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約( )
A.164石
B.178石
C.189石
D.196石
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com