(1)設(shè)M(x,y),由題設(shè)可得A(2,0),B(2,1),C(0,1)
∴
=(x,y),=(x-2,y),=(x,y-1),
=(x-2,y-1),d=|y-1|,
因
•=k(•-d2)∴(x,y)•(x-2,y)=
k[(x,y-1)•(x-2,y-1)-|y-1|
2]
即(1-k)(x
2-2x)+y
2=0為所求軌跡方程.
當k=1時,y=0,動點M的軌跡是一條直線;
當k=0時,x
2-2x+y
2=0,動點M的軌跡是圓;
當k≠1時,方程可化為
(x-1)2+=1,當k>1時,動點M的軌跡是雙曲線;
當0<k<1或k<0時,動點M的軌跡是橢圓.
(2)當
k=時,M的軌跡方程為
(x-1)2+=1,.得:0≤x≤2,y
2=
-(x-1)2.
∵
|+2|2=|(x,y)+2(x-2,y)|2=|(3x-4,3y)|2=
(3x-4)2+9y2=(3x-4)2+9[-(x-1)2]=
(x-)2+.
∴當
x=時,
|+2|2取最小值
當x=0時,
|+2|2取最大值16.
因此,
|+2|的最小值是
,最大值是4.
(3)由于
≤e≤,即e<1,此時圓錐曲線是橢圓,其方程可化為
(x-1)2+=1,
①當0<k<1時,a
2=1,b
2=1-k,c
2=1-(1-k)=k,
e2==k,∵
≤e≤,∴
≤k≤;
②當k<0時,a
2=1-k,b
2=1,c
2=(1-k)-1=-k,
e2===,∵
≤e≤,∴
≤≤,而k<0得,
-1≤k≤-.
綜上,k的取值范圍是
[-1,-]∪[,].