(2009•金山區(qū)一模)若f(n)為n2+1的各位數(shù)字之和(n∈N*).如:因?yàn)?42+1=197,1+9+7=17,所以f(14)=17.記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2005(8)=
11
11
分析:按照定義,先求出f1(8)=11,f2(8)=1+2+2=5,f3(8)=2+6=8,fk(n)是以3為周期的周期函數(shù).將f2005(8)轉(zhuǎn)化為f1(8).
解答:解:因?yàn)?2+1=65,f1(8)=f(8)=6+5=11,
因?yàn)?12+1=122,f2(8)=1+2+2=5
因?yàn)?2+1=26,f3(8)=2+6=8,
所以fk(n)是以3為周期的周期函數(shù).
又2005=3×668+1,∴f2005(8)=f1(8)=11
故答案為:11.
點(diǎn)評(píng):本題是新定義題目.考查分析解決問(wèn)題、計(jì)算能力.發(fā)現(xiàn)函數(shù)的周期性是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)一模)若函數(shù)f(x)、g(x)的定義域和值域都是R,則“f(x)<g(x),x∈R”成立的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)一模)已知函數(shù)f(x)=loga
1-mxx-1
在定義域D上是奇函數(shù),(其中a>0且a≠1).
(1)求出m的值,并求出定義域D;
(2)判斷f(x)在(1,+∞)上的單調(diào)性,并加以證明;
(3)當(dāng)x∈(r,a-2)時(shí),f(x)的值的范圍恰為(1,+∞),求a及r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)一模)在(x2+
1x
)6
的二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)是第
5
5
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)一模)(
1+i1-i
2010=
-1
-1
.(i為虛數(shù)單位)

查看答案和解析>>

同步練習(xí)冊(cè)答案