3.已知函數(shù)f(x)=$\sqrt{x}$+1,若f(x)=3,則x=4.

分析 由函數(shù)f(x)=$\sqrt{x}$+1,f(x)=3,得到$\sqrt{x}$+1=3,解出即可.

解答 解:由$\sqrt{x}$+1=3,解得:x=4,
故答案為:4.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB=(3c-b)cosA.
(1)若asinB=2$\sqrt{2}$,求b;
(2)若a=2$\sqrt{2}$,且△ABC的面積為$\sqrt{2}$,求b+c的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在函數(shù)①y=cos|2x|;②y=sin(2x+$\frac{π}{3}$);③y=|cosx|;④y=tan(2x-$\frac{π}{6}$)中,最小正周期為π的所有函數(shù)為( 。
A.①②③B.①②③④C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤8}\\{0≤x≤4}\\{0≤y≤3}\end{array}\right.$則x+y的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}滿足an+1+(-1)n an=2n(n∈N*),則{an}的前40項和為$\frac{{7•{2^{41}}-14}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C的左、右焦點分別為(-$\sqrt{3},0$)、($\sqrt{3},0$),且經(jīng)過點($\sqrt{3},\frac{1}{2}$).
( I)求橢圓C的方程:
( II)直線y=kx(k∈R,k≠0)與橢圓C相交于A,B兩點,D點為橢圓C上的動點,且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時直線AB的方程:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線y=sin$\frac{πx}{2}$與y=x3圍成的圖形的面積是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{π}-\frac{1}{4}$D.$\frac{4}{π}-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線3x+4y+3=0與直線6x+8y+11=0間的距離是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.直線L:y=mx+1與橢圓C:ax2+y2=2(a>0)交于A、B兩點,以O(shè)A、OB為鄰邊作平行四邊形OAPB.
(1)求證:橢圓C:ax2+y2=2(a>0)與直線L:y=mx+1總有兩個交點.
(2)當(dāng)a=2時,求點P的軌跡方程;
(3)是否存在直線L,使OAPB為矩形?若存在,求出此時直線L的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案