已知等差數(shù)列,公差,前n項(xiàng)和為,,且滿(mǎn)足成等比數(shù)列.
(I)求的通項(xiàng)公式;
(II)設(shè),求數(shù)列的前項(xiàng)和的值.

(1);(2).

解析試題分析:本題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的性質(zhì)、等比中項(xiàng)以及裂項(xiàng)相消法求和等數(shù)學(xué)知識(shí),考查基本運(yùn)算能力.第一問(wèn),利用等差數(shù)列的性質(zhì)得到,再利用等比中項(xiàng)得,
利用等差數(shù)列的通項(xiàng)公式展開(kāi)求出,所以可以寫(xiě)出數(shù)列的通項(xiàng)公式;第二問(wèn),將第一問(wèn)的結(jié)論代入,將化簡(jiǎn),得到,將每一項(xiàng)都用這種形式展開(kāi),數(shù)列求和.
試題解析:(I)由,得
成等比數(shù)列 ,
,   
解得:,                      3分
  
數(shù)列的通項(xiàng)公式為.             5分
(Ⅱ)

          10分
考點(diǎn):1.等比中項(xiàng);2.等差數(shù)列的性質(zhì);3.等差數(shù)列的通項(xiàng)公式;4.裂項(xiàng)相消法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和為,,等差數(shù)列滿(mǎn)足,
(1)求數(shù)列,數(shù)列的通項(xiàng)公式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知Sn是數(shù)列{an}的前n項(xiàng)和,且anSn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn,Tnbn+1bn+2+…+b2n,是否存在最大的正整數(shù)k,使得
對(duì)于任意的正整數(shù)n,有Tn恒成立?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和滿(mǎn)足,又,.
(1)求實(shí)數(shù)k的值;
(2)問(wèn)數(shù)列是等比數(shù)列嗎?若是,給出證明;若不是,說(shuō)明理由;
(3)求出數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和滿(mǎn)足
(Ⅰ)證明為等比數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)設(shè);求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)不等式組所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi) 的整點(diǎn)個(gè)數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1) 求證:數(shù)列{an}的通項(xiàng)公式是an=3n(n∈N*).
(2) 記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn.若對(duì)于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,設(shè)
(Ⅰ)試寫(xiě)出數(shù)列的前三項(xiàng);
(Ⅱ)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式
(Ⅲ)設(shè)的前項(xiàng)和為,
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿(mǎn)足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列.
(Ⅰ)求a的值及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{logan}的前n項(xiàng)和為T(mén)n.求使Tn>bn的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,數(shù)列滿(mǎn)足
(1)求的通項(xiàng)公式;
(2)求證:數(shù)列為等比數(shù)列;
(3)求前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案