二項(xiàng)式(x-
1
x
)n
展開(kāi)式中,僅有第五項(xiàng)的二項(xiàng)式系數(shù)最大,則其常數(shù)項(xiàng)為_(kāi)_____.
根據(jù)題意二項(xiàng)式(x-
1
x
)n
展開(kāi)式中,僅有第五項(xiàng)的二項(xiàng)式系數(shù)最大,
則n=8,
所以二項(xiàng)式(x-
1
x
)n
=(x-
1
x
)
8
展開(kāi)式的通項(xiàng)為
Tr+1=(-1)rC8rx8-2r
令8-2r=0得r=4
則其常數(shù)項(xiàng)為C84=70
故答案為70.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某果園要將一批水果用汽車(chē)從所在城市甲運(yùn)至銷(xiāo)售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由果園承擔(dān).
若果園恰能在約定日期(日)將水果送到,則銷(xiāo)售商一次性支付給果園20萬(wàn)元; 若在約定日期前送到,每提前一天銷(xiāo)售商將多支付給果園1萬(wàn)元; 若在約定日期后送到,每遲到一天銷(xiāo)售商將少支付給果園1萬(wàn)元.
為保證水果新鮮度,汽車(chē)只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送水果,已知下表內(nèi)的信息:
      統(tǒng)計(jì)信息
汽車(chē)行駛路線
不堵車(chē)的情況下到達(dá)城市乙所需 時(shí)間(天)
堵車(chē)的情況下到達(dá)城市乙所需時(shí)間(天)
堵車(chē)的概率
運(yùn)費(fèi)(萬(wàn)元)
公路1
2
3


公路2
1
4


 
(注:毛利潤(rùn)銷(xiāo)售商支付給果園的費(fèi)用運(yùn)費(fèi))
(1)記汽車(chē)走公路1時(shí)果園獲得的毛利潤(rùn)為(單位:萬(wàn)元),求的分布列和數(shù)學(xué)期望;
(2)假設(shè)你是果園的決策者,你選擇哪條公路運(yùn)送水果有可能讓果園獲得的毛利潤(rùn)更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司計(jì)劃在迎春節(jié)聯(lián)歡會(huì)中設(shè)一項(xiàng)抽獎(jiǎng)活動(dòng):在一個(gè)不透明的口袋中裝入外形一樣號(hào)碼分別為1,2,3,…,10的十個(gè)小球;顒(dòng)者一次從中摸出三個(gè)小球,三球號(hào)碼有且僅有兩個(gè)連號(hào)的為三等獎(jiǎng),獎(jiǎng)金30元;三球號(hào)碼都連號(hào)為二等獎(jiǎng),獎(jiǎng)金60元;三球號(hào)碼分別為1,5,10為一等獎(jiǎng),獎(jiǎng)金240元;其余情況無(wú)獎(jiǎng)金。
(1)求員工甲抽獎(jiǎng)一次所得獎(jiǎng)金ξ的分布列與期望;
(2)員工乙幸運(yùn)地先后獲得四次抽獎(jiǎng)機(jī)會(huì),他得獎(jiǎng)次數(shù)的方差是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知a=2
π0
cos(x+
π
6
)dx
,則二項(xiàng)式(x2+
a
x
)10
的展開(kāi)式中二項(xiàng)式系數(shù)最大項(xiàng)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)任意實(shí)數(shù)x,都有(x-1)4=a0+a1(x-3)+a(x-3)2+a3(x-3)3+a4(x-3)4,則
a1+a3
a3
的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若n∈N*,且n為奇數(shù),則6n+C
1n
•6n-1+C
2n
•6n-2+…+C
n-1n
•6被8除所得的余數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2x3-
1
2x
)7
的展開(kāi)式中系數(shù)為有理數(shù)的項(xiàng)的個(gè)數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若二項(xiàng)式(
1
x
+x23展開(kāi)式中的常數(shù)項(xiàng)為k,則直線y=kx與曲線y=x2圍成的封閉圖形的面積為( 。
A.3B.
9
2
C.9D.
27
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一場(chǎng)娛樂(lè)晚會(huì)上,有5位民間歌手(1至5號(hào))登臺(tái)演唱,由現(xiàn)場(chǎng)數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號(hào)歌手的歌迷,他必選1號(hào),不選2號(hào),另在3至5號(hào)中隨機(jī)選2名.觀眾乙和丙對(duì)5位歌手的演唱沒(méi)有偏愛(ài),因此在1至5號(hào)中隨機(jī)選3名歌手.
(1)求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;
(2)X表示3號(hào)歌手得到觀眾甲、乙、丙的票數(shù)之和,求X的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案