11.$a=sin\frac{π}{8}$,$b=\frac{π}{8}$,則a與b的大小關(guān)系是a<b.

分析 根據(jù)當(dāng)x∈(0,$\frac{π}{2}$)時(shí),sinx<x,可得答案.

解答 解:令f(x)=sinx-x,則f′(x)=cosx-1≤0恒成立,
故f(x)=sinx-x為減函數(shù),
又由f(0)=0,
故當(dāng)x∈(0,$\frac{π}{2}$)時(shí),sinx<x,
又由$a=sin\frac{π}{8}$,$b=\frac{π}{8}$,
故a<b,
故答案為:a<b

點(diǎn)評(píng) 令f(x)=sinx-x,由導(dǎo)數(shù)法分析出單調(diào)性,可得當(dāng)x∈(0,$\frac{π}{2}$)時(shí),sinx<x,進(jìn)而得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求下列函數(shù)的反函數(shù),并指出該函數(shù)和它的反函數(shù)的定義域:
(1)y=$\frac{x}{2x-1}$;
(2)y=$\sqrt{2x-3}$;
(3)y=ex-1;
(4)y=2sinx+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.執(zhí)行如圖所示的程序框圖,則輸出的a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.曲線y=ex-2x+e在x=0處的切線方程為x+y-1-e=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.(若n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”如137,359,567等)得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個(gè)數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.已知某同學(xué)甲參加活動(dòng),求甲得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)是1,則直線CB1與BD間的距離為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.計(jì)算$\frac{2+2i}{i}+\frac{1+i}{1-i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)y=f(x)(x∈R)滿足f(x)=2x+1,在數(shù)列{an},a1=1,an+1=f(an)-1(n∈N*),數(shù)列{bn}為等差數(shù)列,首項(xiàng)b1=1,公差為2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令${c_n}=\frac{b_n}{a_n}$(n∈N*),求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=|x-1|+|x+2|.
(Ⅰ)解不等式f(x)≥5;
(Ⅱ)若關(guān)于x的不等式f(x)>a2-2a對(duì)任意的x∈R恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案