【題目】龍虎山花語世界位于龍虎山主景區(qū)排衙峰下,是一座獨具現(xiàn)代園藝風格的花卉公園,園內(nèi)匯集了余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風格,景觀設(shè)計唯美新穎,玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應又自成一體,是世界園藝景觀的大展示.該景區(qū)自年春建成,試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達萬人.

某學校社團為了解進園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在日賞花旺季對進園游客進行取樣調(diào)查,從當日名游客中抽取人進行統(tǒng)計分析,結(jié)果如下:

年齡

頻數(shù)

頻率

4

合計

(I)完成表一中的空位①~④,并作答題紙中補全頻率分布直方圖,并估計日當日接待游客中歲以下的游戲的人數(shù).

(II)完成表二,并判斷能否有的把握認為在觀花游客中“年齡達到歲以上”與“性別”相關(guān);

(表二)

歲以上

歲以下

合計

男生

女生

合計

(參考公式: ,其中

(III)按分層抽樣(分歲以上與歲以下兩層)抽取被調(diào)查的位游客中的人作為幸運游客免費領(lǐng)取龍虎山內(nèi)部景區(qū)門票,再從這人中選取人接受電視臺采訪,設(shè)這人中年齡在歲以上(含歲)的人數(shù)為,求的分布列.

【答案】(1)6000;(2)見解析;(3)見解析.

【解析】試題分析:I由頻率分布表的性質(zhì)能完成表),從而能完成頻率分布直方圖,進而求出 歲以下頻率,由此以頻率作為概率,能估計2017 71日當日接待游客中 歲以下人數(shù);II完成表格,求出 ,從而得到?jīng)]有 的把握認為在觀花游客中年齡達到 以上性別有關(guān);(III)由分層抽樣應從這 人中抽取 以上人數(shù) , 以下人數(shù)的取值可能 ,分別求出相應的概率,由此能求出 的分布列.

試題解析:(I)完成表(一): .

完成以下頻率分布直方圖:

因為年齡在歲以下的頻率為,

以頻率作為概率,估計日當日接待游客中歲以下的人數(shù)為.

(II)完成列聯(lián)表如下:

歲以上

歲以下

合計

男生

女生

合計

的觀測值,

所以沒有的把握認為在觀花游客中“年齡達到歲以上”與“性別”相關(guān).

(III)由分層抽樣應從這人中抽取到歲以上的人的人數(shù)為人,

歲以下的人的人數(shù)為人,

的所有可能的取值為.

,

,

的分布列為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,其中為自然對數(shù)的底數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當為何值時, 軸為曲線的切線;

(2)用表示中的最小值,設(shè)函數(shù),討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義在實數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當x≥1時,f(x)=2x﹣1,則f( ),f( ),f( )的大小關(guān)系是(
A.f( )<f( )<f(
B.f( )<f( )<f( )??
C.f( )<f( )<f(
D.f( )<f( )<f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒中共有形狀大小完全相同的5個球,其中有2個紅球和3個白球.若從中隨機取2個球,則概率為 的事件是(
A.都不是紅球
B.恰有1個紅球
C.至少有1個紅球
D.至多有1個紅球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (為參數(shù)).

(I)寫出直線的一般方程與曲線的直角坐標方程,并判斷它們的位置關(guān)系;

(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(2)若對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.已知
(1)求角A的大;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=4,BC=3,點D在線段AC上,且AD=4DC.
(Ⅰ)求BD的長;
(Ⅱ)求sin∠CBD的值.

查看答案和解析>>

同步練習冊答案