求當(dāng)函數(shù)y=sin2x+acosx-a-的最大值為1時(shí)a的值.
【答案】分析:先通過變形化為關(guān)于cosx的二次函數(shù),配方后,根據(jù)函數(shù)式的特點(diǎn),對(duì)a進(jìn)行分類討論.
解答:解:∵y=1-cos2x+acosx-a-=-cos2x+acosx--,設(shè)cosx=t,∵-1≤cosx≤1,∴-1≤t≤1.
∴y=-t2+at--=-+--,-1≤t≤1,函數(shù)y的對(duì)稱軸為t=
(1)當(dāng)<-1,即a<-2時(shí),t=-1,y有最大值-a-
由已知條件可得-a-=1,∴a=->-2(舍去).
(2)當(dāng)-1≤≤1時(shí),即-2≤a≤2時(shí),t=,y有最大值--
由已知條件可得--=1,解得a=1-或a=1+(舍去).
(3)當(dāng)>1,即a>2時(shí),則當(dāng)t=1,y有最大值-
由已知條件可得-=1,∴a=5.
綜上可得,a=1-或a=5.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,二次函數(shù)的性質(zhì)應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

知函數(shù)y=sin2ωx+
3
sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

知函數(shù)y=sin2ωx+數(shù)學(xué)公式sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

知函數(shù)y=sin2ωx+
3
sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省安慶市望江中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

知函數(shù)y=sin2ωx+sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年廣東省汕頭市潮陽一中高三摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

知函數(shù)y=sin2ωx+sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案