【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.
【答案】解:f(x)= sin2ωx﹣ (1+cos2ωx)﹣ =sin(2ωx﹣ )﹣1,
∵f(x)圖象上相鄰兩個最高點的距離為π,
∴ =π,即ω=1,
則f(x)=sin(2x﹣ )﹣1,
(Ⅰ)令﹣ +2kπ≤2x﹣ ≤ +2kπ,k∈Z,得到﹣ +kπ≤x≤kπ+ ,k∈Z,
則函數(shù)f(x)的單調(diào)遞增區(qū)間為[﹣ +kπ,kπ+ ],k∈Z;
(Ⅱ)由f(C)=0,得到f(C)=sin(2C﹣ )﹣1=0,即sin(2x﹣ )=1,
∴2C﹣ = ,即C= ,
由正弦定理 = 得:b= ,
把sinB=3sinA代入得:b=3a,
由余弦定理及c= 得:cosC= = = ,
整理得:10a2﹣7=3a2 ,
解得:a=1,
則b=3.
【解析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,整理為一個角的正弦函數(shù),根據(jù)題意確定出ω的值,確定出f(x)解析式,利用正弦函數(shù)的單調(diào)性求出函數(shù)f(x)的單調(diào)遞增區(qū)間即可;(Ⅱ)由f(C)=0,求出C的度數(shù),利用正弦定理化簡sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a與b的值即可.
【考點精析】本題主要考查了兩角和與差的正弦公式和正弦函數(shù)的單調(diào)性的相關知識點,需要掌握兩角和與差的正弦公式:;正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數(shù)m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某競賽的題庫系統(tǒng)有60%的自然科學類題目,40%的文化生活類題目(假設題庫中的題目總數(shù)非常大),參賽者需從題庫中抽取3個題目作答,有兩種抽取方法:方法一是直接從題庫中隨機抽取3個題目;方法二是先在題庫中按照題目類型用分層抽樣的方法抽取10個題目作為樣本,再從這10個題目中任意抽取3個題目.
(1)兩種方法抽取的3個題目中,恰好有1個自然科學類題目和2個文化生活類題目的概率是否相同?若相同,說明理由;若不同,分別計算出兩種抽取方法對應的概率.
(2)已知某參賽者抽取的3個題目恰好有1個自然科學類題目和2個文化生活類題目,且該參賽者答對自然科學類題目的概率為,答對文化生活類題目的概率為.設該參賽者答對的題目數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過對K2的統(tǒng)計量的研究,得到了若干個觀測值,當K2≈6.706時,我們認為兩分類變量A、B( )
A. 有67.06%的把握認為A與B有關系 B. 有99%的把握認為A與B有關系
C. 有0.010的把握認為A與B有關系 D. 沒有充分理由說明A與B有關系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
(1)求根據(jù)上表可得線性回歸方程=x+;
(2) 模型預報廣告費用為6萬元時銷售額為多少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)f(x)=sin(x﹣)sin(x+),有下列命題:
①此函數(shù)可以化為f(x)=﹣sin(2x+);
②函數(shù)f(x)的最小正周期是π,其圖象的一個對稱中心是( , 0);
③函數(shù)f(x)的最小值為﹣ , 其圖象的一條對稱軸是x=;
④函數(shù)f(x)的圖象向右平移個單位后得到的函數(shù)是偶函數(shù);
⑤函數(shù)f(x)在區(qū)間(﹣ , 0)上是減函數(shù).
其中所有正確的命題的序號個數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com