19.一個(gè)圓錐被過頂點(diǎn)的平面截去了較小的一部分幾何體,余下的幾何體的三視圖如圖,則余下部分的幾何體的體積為( 。
A.$\frac{\sqrt{2}}{3}$+$\frac{\sqrt{2}}{2}$πB.$\sqrt{2}$+$\frac{\sqrt{2}}{2}$πC.$\sqrt{2}$+$\frac{3\sqrt{2}}{2}$πD.2$\sqrt{2}$+3$\sqrt{2}$π

分析 由三視圖求出圓錐的高和底面半徑,再求出截去的底面弧的圓心角,由扇形面積公式求出底面剩余部分的面積,代入錐體體積公式計(jì)算可得答案.

解答 解:由三視圖得,圓錐底面半徑為r=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
圓錐的高h(yuǎn)=$\sqrt{{(\sqrt{3})}^{2}-{1}^{2}}$=$\sqrt{2}$,
由俯視圖和側(cè)視圖可得:
截去的底面弧的圓心角α=2×$\frac{π}{4}$=$\frac{π}{2}$,
底面剩余部分的面積S=$\frac{1}{2}×\sqrt{2}×\sqrt{2}+\frac{1}{2}×\frac{3π}{2}×(\sqrt{2})^{2}$=1+$\frac{3π}{2}$,
所以幾何體的體積為:V=$\frac{1}{3}$Sh=$\frac{1}{3}$×(1+$\frac{3π}{2}$)×$\sqrt{2}$=$\frac{\sqrt{2}}{3}+\frac{\sqrt{2}}{2}π$,
故選:A.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.集合A={1,2,3,4},B={3,4,5,6},則圖中陰影部分表示的集合為(  )
A.B.{1,2}C.{3,4}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.記等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=3,且數(shù)列{${\sqrt{S_n}}\right.$}也為等差數(shù)列,則a11=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.不等式log3(2x-3)>log3(x-2)成立的一個(gè)充分不必要條件是( 。
A.x>2B.x>4C.1<x<2D.x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且an2+2an=4Sn
(1)求Sn
(2)設(shè)bn=($\sqrt{n+1}$+$\sqrt{n}$)•$\sqrt{S_n}$,求數(shù)列{${\frac{1}{b_n}}\right.$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.以下四個(gè)命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②若數(shù)據(jù)x1,x2,x3,…xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2;
③兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1;
④對(duì)分類變量x與y的隨機(jī)變量K2的觀測值k來說,k越小,判斷“x與y有關(guān)”的把握越大.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.經(jīng)銷商經(jīng)銷某種產(chǎn)品,在一個(gè)銷售周期內(nèi),每售出1件產(chǎn)品獲得利潤500元,未售出的產(chǎn)品每件虧損100元.根據(jù)過去的市場記錄,得到了60個(gè)銷售周期的市場需求量的頻數(shù)分布表:
需求量[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)61218159
經(jīng)銷商為了下一個(gè)銷售周期購進(jìn)了130件產(chǎn)品,以X(100≤X≤150)表示下一個(gè)銷售周期內(nèi)的市場需求量,Y表示下一個(gè)銷售周期內(nèi)的經(jīng)銷產(chǎn)品的利潤.
(1)畫出市場需求量的頻率分布直方圖,并以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)需求量,估計(jì)一個(gè)銷售周期內(nèi)的市場需求量的平均數(shù);
(2)根據(jù)市場需求量的頻數(shù)分布表提供的數(shù)據(jù),估計(jì)下一個(gè)銷售周期內(nèi)的經(jīng)銷產(chǎn)品利潤Y不少于53000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.太極圖是以黑白兩個(gè)魚形紋組成的圓形圖案,俗稱陰陽魚.太級(jí)圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對(duì)統(tǒng)一的形式美、和諧美.現(xiàn)在定義:能夠?qū)AO的周長和面積同時(shí)分為相等的兩部分的函數(shù)稱為圓O的“太極函數(shù)”,給出下列命題:
p1:對(duì)于任意一個(gè)圓O,其對(duì)應(yīng)的“太極函數(shù)”不唯一;
p2:f(x)=ex+e-x可能是某個(gè)圓的一個(gè)“太極函數(shù)”;
p3:圓O:(x-1)2+y2=36的一個(gè)“太極函數(shù)”為f(x)=-ln$\frac{5+x}{7-x}$;
p4:“太極函數(shù)”的圖象一定是中心對(duì)稱圖形.
其中正確的命題是( 。
A.p1,p2B.p1,p3C.p2,p3D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}({a∈R})$.
(Ⅰ)若f(x)在點(diǎn)(2,f(2))處的切線與直線x-2y+1=0垂直,求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)討論函數(shù)f(x)在區(qū)間[1,e2]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案