(1)如圖,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求證:P,Q,R三點(diǎn)共線.

(2)如圖,空間四邊形ABCD中,E,F分別是AB和CB上的點(diǎn),G,H分別是CD和AD上的點(diǎn),  且EH與FG相交于點(diǎn)K. 求證:EH,BD,FG三條直線相交于同一點(diǎn).

(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

解析試題分析:(1)由公理③可知,兩個(gè)平面只要有一個(gè)公共點(diǎn),則它們就有無(wú)數(shù)個(gè)公共點(diǎn),且這些公共點(diǎn)共線,所以要證明三點(diǎn)共線,只需證明這三個(gè)點(diǎn)同時(shí)是兩個(gè)平面的公共點(diǎn);(2)要證明三條直線交于一點(diǎn),只需證明其中的兩條直線交于一點(diǎn),再證明第三條直線也過(guò)交點(diǎn),而證明點(diǎn)在一條直線上,只要說(shuō)明直線是兩個(gè)平面的交線,點(diǎn)是兩個(gè)平面的公共點(diǎn)即可.
試題解析:(1)∵,,且,同理可證:,;,,∴三點(diǎn)共線.
(2)∵,,∴,,又面∩面=,∴三條直線交于一點(diǎn).
考點(diǎn):平面的基本性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,,,且中點(diǎn).

(I)求證:平面
(Ⅱ)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,面,底面是直角梯形,側(cè)面是等腰直角三角形.且,

(1)判斷的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點(diǎn)是線段上一點(diǎn),當(dāng)//平面時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在斜三棱柱中,側(cè)面⊥底面,側(cè)棱與底面的角,.底面是邊長(zhǎng)為2的正三角形,其重心為點(diǎn),是線段上一點(diǎn),且

(Ⅰ)求證://側(cè)面;
(Ⅱ)求平面與底面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求證:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,平面平面,,是等邊三角形,已知.

(1)設(shè)上的一點(diǎn),證明:平面平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

四棱錐底面是平行四邊形,面,,,分別為的中點(diǎn).

(1)求證:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱錐中,

(Ⅰ)求證:
(Ⅱ)若的中點(diǎn),求與平面所成角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知斜三棱柱的底面是直角三角形, ,側(cè)棱與底面所成角為,點(diǎn)在底面上的射影落在上.

(1)求證:平面;
(2)若,且當(dāng)時(shí),求二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案