分析 (1)依題意知an>0,故an+1>an+$\frac{a_n^2}{n^2}$>an,ak+1=ak+$\frac{a_k^2}{k^2}$<ak+$\frac{{{a_k}{a_{k+1}}}}{k^2}$,從而可得$\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}}<\frac{1}{k^2}$,累加可證結(jié)論成立;
(2)分n=1與n≥2兩類討論,對(duì)于后者,利用放縮法即可證得${a_n}≥\frac{n}{2n+1}$(n∈N*).
解答 (本題滿分15分)
證明:(I)易知an>0,所以an+1>an+$\frac{a_n^2}{n^2}$>an,
所以 ak+1=ak+$\frac{a_k^2}{k^2}$<ak+$\frac{{{a_k}{a_{k+1}}}}{k^2}$,
所以$\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}}<\frac{1}{k^2}$.
所以,當(dāng)n≥2時(shí),$\frac{1}{a_n}=\frac{1}{a_1}-\sum_{k=1}^{n-1}{(\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}})}>\frac{1}{a_1}-\sum_{k=1}^{n-1}{\frac{1}{k^2}}>3-[1+\sum_{k=2}^{n-1}{\frac{1}{k(k-1)}}]=3-[1+\sum_{k=2}^{n-1}{(\frac{1}{k-1}-\frac{1}{k})}]$=$3-[1+1-\frac{1}{n-1}]=\frac{n}{n-1}>1$,
所以an<1.
又${a_1}=\frac{1}{3}<1$,所以an<1(n∈N*),
所以 an<an+1<1(n∈N*).…(8分)
(II)當(dāng)n=1時(shí),顯然成立.
由an<1,知${a_{k+1}}={a_k}+\frac{a_k^2}{k^2}<{a_k}+\frac{a_k}{k^2}$,所以${a_k}>\frac{k^2}{{{k^2}+1}}{a_{k+1}}$,
所以${a_{k+1}}={a_k}+\frac{a_k^2}{k^2}>{a_k}+\frac{1}{k^2}{a_k}•\frac{k^2}{{{k^2}+1}}{a_{k+1}}={a_k}+\frac{1}{{{k^2}+1}}{a_k}{a_{k+1}}$,
所以$\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}}>\frac{1}{{{k^2}+1}}$,
所以,當(dāng)n≥2時(shí),$\frac{1}{a_n}=\frac{1}{a_1}-\sum_{k=1}^{n-1}{(\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}})}<\frac{1}{a_1}-\sum_{k=1}^{n-1}{\frac{1}{{{k^2}+1}}}<3-\sum_{k=1}^{n-1}{\frac{1}{k(k+1)}}=3-\sum_{k=1}^{n-1}{(\frac{1}{k}-\frac{1}{k+1})}$
=$3-(1-\frac{1}{n})=\frac{2n+1}{n}$,即${a_n}>\frac{n}{2n+1}$.
所以${a_n}≥\frac{n}{2n+1}$(n∈N*). …(7分)
點(diǎn)評(píng) 本題考查數(shù)列遞推式,突出考查等放縮法證明不等式的應(yīng)用,考查轉(zhuǎn)化思想與推理運(yùn)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -π | B. | -$\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若命題“p或q”為真命題,則命題p和命題q均為真命題 | |
B. | 命題“若am2<bm2,則a<b”的逆命題是真命題 | |
C. | 命題“若a=-b,則|a|=|b|”的否命題是真命題 | |
D. | 命題“若$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$為空間的一個(gè)基底,則$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow b+\overrightarrow c,\overrightarrow c+\overrightarrow a}\right\}$構(gòu)成空間的另一個(gè)基底”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com