已知函數(shù)(其中是實數(shù)常數(shù),)
(1)若,函數(shù)的圖像關(guān)于點(—1,3)成中心對稱,求的值;
(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;
(3)若b=0,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實數(shù)的取值范圍.
(1);(2);(3).
【解析】
試題分析:(1)由于,,這種類型的函數(shù)我們易聯(lián)想到函數(shù)的平移變換,如向右平移個單位,再向上平移個單位,得函數(shù)的圖象,且函數(shù)的圖象的對稱中心就是,因此我們只要把轉(zhuǎn)化為的形式,即,就能得出結(jié)論;(2)由(1)知,,問題是當(dāng)時,函數(shù)的值域,可分類討論,當(dāng)時,,而當(dāng)時,函數(shù)具有單調(diào)性,由此可很快求出函數(shù)的最值,求出的取值范圍;(3)由于,中還有三個參數(shù),正好題中有三個條件,我們可先求出,然后才能把不等式化為,由于,因此此分式不等式可以兩邊同乘以直接去分母化為整式不等式,,從而可以分離參數(shù)得,也即,下面我們只要求出的最小值即可.
試題解析:(1),
.
類比函數(shù)的圖像,可知函數(shù)的圖像的對稱中心是.
又函數(shù)的圖像的對稱中心是,
(2)由(1)知,.
依據(jù)題意,對任意,恒有.
若,則,符合題意.
若,當(dāng)時,對任意,恒有,不符合題意.
所以,函數(shù)在上是單調(diào)遞減函數(shù),且滿足.
因此,當(dāng)且僅當(dāng),即時符合題意.
綜上,所求實數(shù)的范圍是.
(3)依據(jù)題設(shè),有解得
于是,.
由,解得.
因此,.
考察函數(shù),可知該函數(shù)在是增函數(shù),故.
所以,所求負(fù)實數(shù)的取值范圍是.
考點:(1)圖象變換;(2)函數(shù)的最值;(3)分式不等式與分離參數(shù)法求參數(shù)取值范圍.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)理數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)(其中是實數(shù)常數(shù),)
(1)若,函數(shù)的圖像關(guān)于點(—1,3)成中心對稱,求的值;
(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;
(3)若b=0,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省浙北名校聯(lián)盟高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)(其中是實數(shù)).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且有兩個極值點,求的取值范圍.
(其中是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇阜寧中學(xué)高三上學(xué)期第三次調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中是實數(shù),設(shè)為該函數(shù)的圖象上的兩點,且.
⑴指出函數(shù)的單調(diào)區(qū)間;
⑵若函數(shù)的圖象在點處的切線互相垂直,且,求的最小值;
⑶若函數(shù)的圖象在點處的切線重合,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇阜寧中學(xué)高三上學(xué)期第三次調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中是實數(shù),設(shè)為該函數(shù)的圖象上的兩點,且.
⑴指出函數(shù)的單調(diào)區(qū)間;
⑵若函數(shù)的圖象在點處的切線互相垂直,且,求的最小值;
⑶若函數(shù)的圖象在點處的切線重合,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com