已知圓的面積S(R)=πR2,顯然S'(R)=2πR表示的是圓的周長(zhǎng),即C=2πR把該結(jié)論類(lèi)比到空間,寫(xiě)出球中的類(lèi)似結(jié)論:
以半徑為R的球的體積為V(R)=
4
3
πR3
,其導(dǎo)函數(shù)表示的是球的表面積,即S=4πR2
以半徑為R的球的體積為V(R)=
4
3
πR3
,其導(dǎo)函數(shù)表示的是球的表面積,即S=4πR2
分析:圓的面積函數(shù)的導(dǎo)數(shù)等于圓的周長(zhǎng)函數(shù),類(lèi)比得到球的體積函數(shù)的導(dǎo)數(shù)等于球的表面積函數(shù),由二維空間推廣到三維空間.
解答:解:由類(lèi)比思想,可得半徑為R的球的體積為V(R)=
4
3
πR3
,其導(dǎo)函數(shù)為V′(R)=
4
3
×3πR2=4πR2
,顯然表示的是球的表面積.
故答案為:以半徑為R的球的體積為V(R)=
4
3
πR3
,其導(dǎo)函數(shù)表示的是球的表面積,即S=4πR2
點(diǎn)評(píng):本題考查類(lèi)比推理,解答本題的關(guān)鍵是:(1)找出兩類(lèi)事物:圓與球之間的相似性或一致性;(2)用圓的性質(zhì)去推測(cè)球的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2=r2(r>0)的面積為S=π•r2,由此推理橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的面積最有可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省杭州地區(qū)七校高二期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓的方程為,過(guò)點(diǎn)作直線(xiàn)與圓交于、兩點(diǎn)。

(1)若坐標(biāo)原點(diǎn)O到直線(xiàn)AB的距離為,求直線(xiàn)AB的方程;

(2)當(dāng)△的面積最大時(shí),求直線(xiàn)AB的斜率;

(3)如圖所示過(guò)點(diǎn)作兩條直線(xiàn)與圓O分別交于R、S,若,且兩角均為正角,試問(wèn)直線(xiàn)RS的斜率是否為定值,并說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓的面積S(R)=πR2,顯然S'(R)=2πR表示的是圓的周長(zhǎng),即C=2πR把該結(jié)論類(lèi)比到空間,寫(xiě)出球中的類(lèi)似結(jié)論:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓x2+y2=r2(r>0)的面積為S=π•r2,由此推理橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的面積最有可能是( 。
A.π•a2B.π•b2C.π•abD.π(ab)2

查看答案和解析>>

同步練習(xí)冊(cè)答案