【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,已知
(1)求sinB的值;
(2)求c的值.

【答案】
(1)解:∵△ABC中,cosA= >0,

∴A為銳角,sinA= =

根據(jù)正弦定理,得 ,

,


(2)解:根據(jù)余弦定理,得a2=b2+c2﹣2bccosA,

∴9=4+c2﹣2×2c× ,

∴3c2﹣4c﹣15=0

解之得:c=3或c=﹣ (舍去),

∴c=3


【解析】(1)根據(jù)余弦函數(shù)在(0,π)的符號,結(jié)合cosA= >0,可得A是銳角,再由同角三角函數(shù)關(guān)系求出sinA的值,最后利用正弦定理列式,可得sinB的值;(2)根據(jù)余弦定理,列出等式:a2=b2+c2﹣2bccosA,代入已知數(shù)據(jù)可得關(guān)于邊c的一元二次方程,然后解這個一元二次方程,可得c的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為為直徑的圓O過橢圓E的上頂點(diǎn)D,直線DB與圓O相交得到的弦長為.設(shè)點(diǎn),連接PA交橢圓于點(diǎn)C,坐標(biāo)原點(diǎn)為O.

(I)求橢圓E的方程;

(II)若三角形ABC的面積不大于四邊形OBPC的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

為慶!2017年中國長春國際馬拉松賽”,某單位在慶祝晚會中進(jìn)行嘉賓現(xiàn)場抽獎活動.抽獎盒中裝有大小相同的6個小球,分別印有“長春馬拉松”和“美麗長春”兩種標(biāo)志,搖勻后,規(guī)定參加者每次從盒中同時抽取兩個小球(登記后放回并搖勻),若抽到的兩個小球都印有“長春馬拉松”即可中獎,并停止抽獎,否則繼續(xù),但每位嘉賓最多抽取3次.已知從盒中抽取兩個小球不都是“美麗長春”標(biāo)志的概率為.

(Ⅰ)求盒中印有“長春馬拉松”標(biāo)志的小球個數(shù);

(Ⅱ)用η表示某位嘉賓抽獎的次數(shù),求η的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】王府井百貨分店今年春節(jié)期間,消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計(jì), 表示第天參加抽獎活動的人數(shù),得到統(tǒng)計(jì)表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)判斷變量之間是正相關(guān)還是負(fù)相關(guān);

(3)若該活動只持續(xù)10天,估計(jì)共有多少名顧客參加抽獎.

參與公式: , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知),,其中為自然對數(shù)的底數(shù).

(1)若恒成立,求實(shí)數(shù)的取值范圍;

(2)若在(1)的條件下,當(dāng)取最大值時,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底, 為常數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)設(shè),試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,sinC+sin(A﹣B)=3sin2B.若 ,則 =(
A.
B.3
C. 或3
D.3或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:若0<a<1,則不等式ax2﹣2ax+1>0在R上恒成立,命題q:a≥1是函數(shù) 在(0,+∞)上單調(diào)遞增的充要條件;在命題 ①“p且q”、②“p或q”、③“非p”、④“非q”中,假命題是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=3,AC邊上的中線BD= , =5.
(1)求AC的長;
(2)求sin(2A﹣B)的值.

查看答案和解析>>

同步練習(xí)冊答案