【題目】在四棱錐中,底面是邊長(zhǎng)為的正方形,底面,四棱錐的體積,的中點(diǎn).

1)求異面直線所成角的大小;

2)求點(diǎn)到平面的距離.

【答案】1;(2.

【解析】

1)連接交于點(diǎn),連接,利用中位線的性質(zhì)得出,可得出異面直線所成角為或其補(bǔ)角,先由錐體的體積公式計(jì)算出,并證明出,然后利用銳角三角函數(shù)求出,由此可得出異面直線所成角的大小;

2)過點(diǎn)在平面內(nèi)作,證明平面,并證明出平面,由此可得出點(diǎn)到平面的距離等于,然后利用等面積法計(jì)算出即可.

1)連接、交于點(diǎn),連接,則的中點(diǎn),

底面,且底面是邊長(zhǎng)為的正方形,底面積為

,解得.

、分別為、的中點(diǎn),

所以,異面直線所成角為或其補(bǔ)角,

四邊形是正方形,則,

底面,平面,,

,平面,

平面,,即,

,

中,,,

因此,異面直線所成角的大小為;

2)過點(diǎn)在平面內(nèi)作

底面,平面,

四邊形是正方形,則,平面,

平面,又,,平面,

平面,平面平面,

所以,點(diǎn)到平面的距離等于,

中,,,由勾股定理得,

由等面積法得.

因此,點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且,當(dāng)時(shí),,則在區(qū)間內(nèi)關(guān)于的方程解得個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個(gè)結(jié)論:

①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號(hào)是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,為自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn);

(2)若函數(shù)存在兩個(gè)不同的極值點(diǎn),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng),函數(shù)圖象上是否存在3條互相平行的切線,并說明理由?

(Ⅱ)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),a為實(shí)數(shù),

求函數(shù)的單調(diào)區(qū)間;

若存在實(shí)數(shù)a,使得對(duì)任意恒成立,求實(shí)數(shù)m的取值范圍.提示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足,若恒成立,則實(shí)數(shù)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為,.

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)直線與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.延長(zhǎng)線交于點(diǎn),若的面積是面積的3倍,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案