設橢圓M:(a>b>0)的離心率與雙曲線x2﹣y2=1的離心率互為倒數(shù),且內切于圓x2+y2=4.
(1)求橢圓M的方程;
(2)若直線y=x+m交橢圓于A、B兩點,橢圓上一點,求△PAB面積的最大值.
解:(1)雙曲線的離心率為,
則橢圓的離心率為
圓x2+y2=4的直徑為4,則2a=4,
得:
所求橢圓M的方程為
(2)直線AB的直線方程:
,得,
,
得﹣2<m<2
,
=
又P到AB的距離為.則

當且僅當取等號
.    
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2008-2009學年湖北省天門中學高二(下)5月月考數(shù)學試卷(A卷)(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率為,長軸長為,設過右焦點F傾斜角為θ的直線交橢圓M于A,B兩點.
(Ⅰ)求橢圓M的方程;
(Ⅱ)求證|AB|=;
(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省徐州七中高考數(shù)學模擬試卷(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率為,長軸長為,設過右焦點F傾斜角為θ的直線交橢圓M于A,B兩點.
(Ⅰ)求橢圓M的方程;
(Ⅱ)求證|AB|=;
(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河南省四校高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率與雙曲線x2-y2=1的離心率互為倒數(shù),且內切于圓x2+y2=4.
(1)求橢圓M的方程;
(2)若直線y=x+m交橢圓于A、B兩點,橢圓上一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年山東省高考數(shù)學仿真押題試卷01(文科)(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率與雙曲線x2-y2=1的離心率互為倒數(shù),且內切于圓x2+y2=4.
(1)求橢圓M的方程;
(2)若直線y=x+m交橢圓于A、B兩點,橢圓上一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省高考數(shù)學模擬試卷1(文科)(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率為,長軸長為,設過右焦點F傾斜角為θ的直線交橢圓M于A,B兩點.
(Ⅰ)求橢圓M的方程;
(2)設過右焦點F且與直線AB垂直的直線交橢圓M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

同步練習冊答案