A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 設(shè)復數(shù)z=a+bi,a,b∈R,根據(jù)題意求出a,b的值,即可得到z的坐標,問題得以解決
解答 解:設(shè)復數(shù)z=a+bi,a,b∈R,i為虛數(shù)單位,
則z的共軛復數(shù)為$\overline{z}$=a-bi;
∴(z+2$\overline{z}$)(1-2i)=(3a-bi)(1-2i)=3a-2b-(6a+b)i=3-4i,
∴$\left\{\begin{array}{l}{3a-2b=3}\\{6a+b=4}\end{array}\right.$,
解得a=$\frac{11}{15}$,b=-$\frac{2}{5}$,
∴復數(shù)z所對應的點的坐標為($\frac{11}{15}$,-$\frac{2}{5}$),
∴在復平面內(nèi),復數(shù)z所對應的點位于第四象限,
故選:D
點評 本題考查了復數(shù)的定義與應用問題,也考查了方程組的解法與應用問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關(guān)于點$(\frac{π}{12},0)$對稱 | |
B. | 關(guān)于軸$x=-\frac{5π}{12}$對稱 | |
C. | 可由函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位得到 | |
D. | 可由函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位得到 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {1,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com