【題目】已知橢圓,傾斜角為60°的直線與橢圓分別交于A、B兩點且,點C是橢圓上不同于A、B一點,則△ABC面積的最大值為_____

【答案】

【解析】

設直線AB的方程為,聯(lián)立方程組,利用根與系數(shù)的關系及弦長公式,得到

,解得的值,設與直線平行且與橢圓相切的直線方程為,聯(lián)立方程組,利用,求得的值,再由點到直線的距離公式和三角形的面積公式,即可求解.

由題意,設直線AB的方程為,點 Ax1,y1),Bx2,y2),

聯(lián)立方程組,整理得18x2+10mx+5m2300,

所以x1+x2,x1x2

因為,即,

代入整理得,解得,

不妨。m2,可得直線AB的方程為,

設與直線AB平行且與橢圓相切的直線方程為yx+t

聯(lián)立方程組,整理得18x2+10tx+5t2300,

300t272×5t230)=0,解得:t±6

t=﹣6時,與直線AB平行且與橢圓相切的直線與直線AB的距離,

所以ABC面積的最大值,

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓上的兩點,線段的中點在直線.

1)當直線的斜率存在時,求實數(shù)的取值范圍;

2)設是橢圓的左焦點,若橢圓上存在一點,使,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論f(x)的單調性;

(2)f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,兩座建筑物,的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是,從建筑物的頂部看建筑物的視角

1)求的長度;

2)在線段上取一點(點與點不重合),從點看這兩座建筑物的視角分別為,,問點在何處時,最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為

(Ⅰ)求曲線的普通方程和直線的直角坐標方程;

(Ⅱ)設點,若直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P是拋物線Ey24x上的動點,F是拋物線E的焦點.

1)求|PF|的最小值;

2)點BCy軸上,直線PBPC與圓(x12+y21相切.當|PF|[4,6]時,求|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是等差數(shù)列,公差為,前項和為.

1)設,,求的最大值.

2)設,數(shù)列的前項和為,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是圓的直徑,在圓上且分別在的兩側,其中.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxDyAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機變量X=(xAyA2+xByB2+xCyC2+xDyD2,用X來衡量家長對小孩飲食習慣的了解程度.

1)若參與游戲的家長對小孩的飲食習慣完全不了解.

)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;

)求X的分布列(簡要說明方法,不用寫出詳細計算過程);

2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.

查看答案和解析>>

同步練習冊答案