(本題滿分16分)如圖直角梯形OABC中,∠COA=∠OAB=,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,以OC、OA、OS分別為x軸、y軸、z軸建立直角坐標系O-xyz.
⑴求的大小(用反三角函數表示);
⑵設
①②OA與平面SBC的夾角(用反三角函數表示);
③O到平面SBC的距離.
⑶設
① . ②異面直線SC、OB的距離為 .(注:⑶只要求寫出答案)
科目:高中數學 來源:2014屆江蘇省高二上學期期中考試數學試卷(解析版) 題型:解答題
(本題滿分16分)如圖:AD=2,AB=4的長方形所在平面與正所在平面互相垂直,分別為的中點.
(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2014屆江蘇省高二9月份質量檢測數學試卷(解析版) 題型:解答題
(本題滿分16分)
如圖,橢圓C:+=1(a>b>0)的焦點F1,F2和短軸的一個端點A構成等邊三角形,
點(,)在橢圓C上,直線l為橢圓C的左準線.
(1) 求橢圓C的方程;
(2) 點P是橢圓C上的動點,PQ ⊥l,垂足為Q.
是否存在點P,使得△F1PQ為等腰三角形?
若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年江蘇省無錫市高三上學期期中考試數學(解析版) 題型:解答題
(本題滿分16分)
如圖為河岸一段的示意圖,一游泳者站在河岸的A點處,欲前往河對岸的C點處。若河寬BC為100m,A、B相距100m,他希望盡快到達C,準備從A步行到E(E為河岸AB上的點),再從E游到C。已知此人步行速度為v,游泳速度為0.5v。
(I)設,試將此人按上述路線從A到C所需時間T表示為的函數;并求自變量 取值范圍;
II)當為何值時,此人從A經E游到C所需時間T最小,其最小值是多少?
查看答案和解析>>
科目:高中數學 來源:2013屆上海市高二年級期終考試數學 題型:解答題
(本題滿分16分)
如圖,在四棱錐中,底面是矩形.已知.
(1)證明平面;
(2)求異面直線與所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數學 來源:2010年新疆農七師高級中學高一第二學期第二階段考試數學試題 題型:解答題
(本題滿分16分)如圖,已知點是正方形所在平面外一點,平面,,點、分別在線段、上,滿足.
(1)求與平面所成的角的大。
(2)求平面PBD與平面ABCD所成角的正切值。
(3)求證:;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com