9.i為虛數(shù)單位,則${(\frac{1+i}{1-i})^{2007}}$=( 。
A.-iB.-1C.iD.1

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡$\frac{1+i}{1-i}$,然后代入${(\frac{1+i}{1-i})^{2007}}$計算得答案.

解答 解:$\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1-i)(1+i)}=i$,
則${(\frac{1+i}{1-i})^{2007}}$=i2007=(i4501•i3=-i.
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.若tanα=2,tanβ=$\frac{3}{4}$,則tan(α-β)等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在平面直角坐標系中,點A(-$\frac{1}{2}$,0),B($\frac{3}{2}$,0),銳角α的終邊與單位圓O交于點P.
(Ⅰ)用α的三角函數(shù)表示點P的坐標;
(Ⅱ)當$\overrightarrow{AP}$•$\overrightarrow{BP}$=-$\frac{1}{4}$時,求α的值;
(Ⅲ)在x軸上是否存在定點M,使得|$\overrightarrow{AP}$|=$\frac{1}{2}$|$\overrightarrow{MP}$|恒成立?若存在,求出點M的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,P是橢圓上任意一點,且|PF1|+|PF2|=2$\sqrt{2}$,它的焦距為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在正實數(shù)t,使直線x-y+t=0與橢圓C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=$\frac{5}{6}$上,若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a1+a3+a5=122.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)復數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試問實數(shù)m取何值時,復數(shù)z
(1)為純虛數(shù)
(2)為實數(shù)
(3)對應的點在復平面的第四象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$\overrightarrow a=(5,x)$,$|{\overrightarrow a}|=9$,則x=±2$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如圖:記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班20個樣本中,化學分數(shù)前十的平均分,并大致判斷哪種教學方式的教學效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學方式有關(guān)”?
甲班乙班總計
成績優(yōu)良
成績不優(yōu)良
總計
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
獨立性檢驗臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖1所示,在四邊形ABCD中,AD∥BC,AD=AB=1,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐ABCD(如圖2)
(1)求證:平面ADC⊥平面ABC;
(2)求三棱錐D-ABC的高.

查看答案和解析>>

同步練習冊答案