設(shè)等差數(shù)列{an}的前n項和為Sn.已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)指出S1,S2,…,S12中哪一個值最大,并說明理由.

解:(1)依題意,有,


由a3=12,得a1=12-2d③,
將③式分別代①、②式,得
<d<-3.

(2)由d<0可知a1>a2>a3>…>a12>a13
因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,
則Sn就是S1,S2,,S12中的最大值.
故在S1,S2,…,S12中S6的值最大.
分析:(1)由S12>0,S13<0,利用等差數(shù)列的前n項和的公式化簡分別得到①和②,然后利用等差數(shù)列的通項公式化簡a3得到首項與公差的關(guān)系式,解出首項分別代入到①和②中得到關(guān)于d的不等式組,求出不等式組的解集即可得到d的范圍;
(2)根據(jù)(1)中d的范圍可知d小于0,所以此數(shù)列為遞減數(shù)列,在n取1到12中的正整數(shù)中只要找到有一項大于0,它的后一項小于0,則這項與之前的各項相加就最大,根據(jù)S12>0,S13<0,利用等差數(shù)列的性質(zhì)及前n項和的公式化簡可得S1,S2,…,S12中最大的項.
點評:本小題考查數(shù)列、不等式及綜合運用有關(guān)知識解決問題的能力,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案