如圖中四個(gè)正方體圖形,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形的序號(hào)是(  )
A.①③B.①④C.②③D.②④
B
圖①中,設(shè)PN中點(diǎn)為Q,連MQ,則AB∥MQ,所以AB∥平面MNP,圖②,圖③中,AB與平面MNP相交,圖④中,AB∥NP,所以AB∥平面MNP.故應(yīng)選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°.

(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,側(cè)面對(duì)角線AB1,BC1上分別有兩點(diǎn)E,F(xiàn),且B1E=C1F.求證:EF∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中點(diǎn),點(diǎn)N在CC1上.
(1)試確定點(diǎn)N的位置,使AB1⊥MN;
(2)當(dāng)AB1⊥MN時(shí),求二面角M-AB1-N的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,有下列四個(gè)命題:
①若m?β,α⊥β,則m⊥α;②若α∥β,m?α,則m∥β;③若n⊥α,n⊥β,m⊥α,則m⊥β;④若α⊥γ,β⊥γ,m⊥α,則m⊥β.
其中正確命題的序號(hào)是(  )
A.①③B.①②C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點(diǎn),并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線EF和BC1所成的角是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2014·黃岡模擬)設(shè)a,b是平面α內(nèi)兩條不同的直線,l是平面α外的一條直線,則“l(fā)⊥a,l⊥b”是“l(fā)⊥α”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案