【題目】空氣質(zhì)量主要受污染物排放量及大氣擴(kuò)散等因素的影響,某市環(huán)保監(jiān)測(cè)站2014年10月連續(xù)10天(從左到右對(duì)應(yīng)1號(hào)至10號(hào))采集該市某地平均風(fēng)速及空氣中氧化物的日均濃度數(shù)據(jù),制成散點(diǎn)圖如圖所示.
(Ⅰ)同學(xué)甲從這10天中隨機(jī)抽取連續(xù)5天的一組數(shù)據(jù),計(jì)算回歸直線方程.試求連續(xù)5天的一組數(shù)據(jù)中恰好同時(shí)包含氧化物日均濃度最大與最小值的概率;
(Ⅱ)現(xiàn)有30名學(xué)生,每人任取5天數(shù)據(jù),對(duì)應(yīng)計(jì)算出30個(gè)不同的回歸直線方程.已知30組數(shù)據(jù)中有包含氧化物日均濃度最值的有14組.現(xiàn)采用這30個(gè)回歸方程對(duì)某一天平均風(fēng)速下的氧化物日均濃度進(jìn)行預(yù)測(cè),若預(yù)測(cè)值與實(shí)測(cè)值差的絕對(duì)值小于2,則稱之為“擬合效果好”,否則為“擬合效果不好”.根據(jù)以上信息完成下列2×2聯(lián)表,并分析是否有95%以上的把握說(shuō)擬合效果與選取數(shù)據(jù)是否包含氧化物日均濃度最值有關(guān).
預(yù)測(cè)效果好 | 擬合效果不好 | 合計(jì) | |
數(shù)據(jù)有包含最值 | 5 | ||
數(shù)據(jù)無(wú)包含最值 | 4 | ||
合計(jì) |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
【答案】(1)(2)有95%以上的把握
【解析】試題分析:(1)利用枚舉法確定從這10天中隨機(jī)抽取一組連續(xù)5天的數(shù)據(jù)包含的基本事件數(shù)(6個(gè)),再確定“數(shù)據(jù)中恰好同時(shí)包含氧化物日均濃度最大與最小值”包含的基本事件(4個(gè)),最后根據(jù)古典概型概率公式求概率(2)先根據(jù)散點(diǎn)圖,填寫相應(yīng)數(shù)據(jù),再根據(jù)公式求,再對(duì)照參考數(shù)據(jù),確定把握性多大.
試題解析:(Ⅰ)記第天監(jiān)測(cè)數(shù)據(jù)為(),由圖象易知的日均濃度最大, 的日均濃度最。畯倪@10天中隨機(jī)抽取一組連續(xù)5天的數(shù)據(jù)包含的基本事件有: , , , , , ,共6種.
記事件 “數(shù)據(jù)中恰好同時(shí)包含氧化物日均濃度最大與最小值”包含的基本事件有: , , , ,共4種.
故連續(xù)5天的數(shù)據(jù)中恰好同時(shí)包含氧化物日均濃度最值的概率.
(Ⅱ)依題意,完成2×2聯(lián)表如下所示.
預(yù)測(cè)準(zhǔn)確 | 預(yù)測(cè)不準(zhǔn)確 | 合計(jì) | |
數(shù)據(jù)有包含最值 | 5 | 10 | 15 |
數(shù)據(jù)沒(méi)有包含最值 | 11 | 4 | 15 |
合計(jì) | 16 | 14 | 30 |
由公式,計(jì)算得.
由參考數(shù)據(jù)可知, ,故有95%以上的把握說(shuō)擬合效果與選取數(shù)據(jù)是否包含氧化物日均濃度最值有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù),在同一直角坐標(biāo)系中f(x)與g(x)相同的一組是( )
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)= ,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)y=cos2x+ sin2x的圖象向左平移m(其中m>0)個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則m的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過(guò)100千米/小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為a元(a>0).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)確定的二面角α﹣l﹣β,a和b是空間的兩條異面直線,在下面給出的四個(gè)條件中,能使a和b所成的角也確定的是( )
A.a∥a且b∥β
B.a∥a且b⊥β
C.aα且b⊥β
D.a⊥α且b⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為Sn,且對(duì)任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求的值;
(2)求證:{an}為等比數(shù)列;
(3)已知數(shù)列{cn},{dn}滿足|cn|=|dn|=an,p(p≥3)是給定的正整數(shù),數(shù)列{cn},{dn}的前p項(xiàng)的和分別為Tp,Rp,且Tp=Rp,求證:對(duì)任意正整數(shù)k(1≤k≤p),ck=dk.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人上午7時(shí)乘船出發(fā),以勻速海里/小時(shí) 從港前往相距50海里的港,然后乘汽車以勻速千米/小時(shí)()自港前往相距千米的市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)市.設(shè)乘船和汽車的所要的時(shí)間分別為、小時(shí),如果所需要的經(jīng)費(fèi) (單位:元)
(1)試用含有、的代數(shù)式表示;
(2)要使得所需經(jīng)費(fèi)最少,求和的值,并求出此時(shí)的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)(0,4),斜率為﹣1的直線與拋物線y2=2px(p>0)交于兩點(diǎn)A、B,且弦|AB|的長(zhǎng)度為4 .
(1)求p的值;
(2)求證:OA⊥OB(O為原點(diǎn)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com