【題目】某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶(hù)之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品.檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立.
(1)記20件產(chǎn)品中恰有2件不合格品的概率為,求的最大值點(diǎn).
(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值.已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶(hù)手中,則工廠要對(duì)每件不合格品支付25元的賠償費(fèi)用.
(i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;
(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?
【答案】】(1).
(2) (i)490.
(ii)應(yīng)該對(duì)余下的產(chǎn)品作檢驗(yàn).
【解析】分析:(1)利用獨(dú)立重復(fù)實(shí)驗(yàn)成功次數(shù)對(duì)應(yīng)的概率,求得,之后對(duì)其求導(dǎo),利用導(dǎo)數(shù)在相應(yīng)區(qū)間上的符號(hào),確定其單調(diào)性,從而得到其最大值點(diǎn),這里要注意的條件;
(2)先根據(jù)第一問(wèn)的條件,確定出,在解(i)的時(shí)候,先求件數(shù)對(duì)應(yīng)的期望,之后應(yīng)用變量之間的關(guān)系,求得賠償費(fèi)用的期望;在解(ii)的時(shí)候,就通過(guò)比較兩個(gè)期望的大小,得到結(jié)果.
詳解:(1)20件產(chǎn)品中恰有2件不合格品的概率為.因此
.
令,得.當(dāng)時(shí),;當(dāng)時(shí),.
所以的最大值點(diǎn)為.
(2)由(1)知,.
(i)令表示余下的180件產(chǎn)品中的不合格品件數(shù),依題意知,,即.
所以.
(ii)如果對(duì)余下的產(chǎn)品作檢驗(yàn),則這一箱產(chǎn)品所需要的檢驗(yàn)費(fèi)為400元.
由于,故應(yīng)該對(duì)余下的產(chǎn)品作檢驗(yàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為隨機(jī)變量,從棱長(zhǎng)為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),;當(dāng)兩條棱平行時(shí),的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí),.
(1)求概率;
(2)求的分布列,并求其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ=4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),在新高考改革中,打破文理分科的“”模式初露端倪,其中語(yǔ)、數(shù)、外三門(mén)課為必考科目,剩下三門(mén)為選考科目選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績(jī)從高到低排列,按照占總體、、、分別賦分分、分、分、分,為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績(jī)的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(jī)(滿分分)頻率分布直方圖,化學(xué)成績(jī)(滿分分)莖葉圖如圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.
(1)采用賦分制后,求小明物理成績(jī)的最后得分;
(2)若小明的化學(xué)成績(jī)最后得分為分,求小明的原始成績(jī)的可能值;
(3)若小明必選物理,其他兩科從化學(xué)、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求出圓的直角坐標(biāo)方程;
(2)已知圓與軸相交于, 兩點(diǎn),直線: 關(guān)于點(diǎn)對(duì)稱(chēng)的直線為.若直線上存在點(diǎn)使得,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從批量較大的產(chǎn)品中隨機(jī)取出10件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),若這批產(chǎn)品的不合格率為0.05,隨機(jī)變量表示這10件產(chǎn)品中的不合格產(chǎn)品的件數(shù).
(1)問(wèn):這10件產(chǎn)品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率”哪個(gè)大?請(qǐng)說(shuō)明理由;
(2)求隨機(jī)變量的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將4本不同的書(shū)隨機(jī)放入如圖所示的編號(hào)為1,2,3,4的四個(gè)抽屜中.
1 | 2 | 3 | 4 |
(Ⅰ)求4本書(shū)恰好放在四個(gè)不同抽屜中的概率;
(Ⅱ)隨機(jī)變量表示放在2號(hào)抽屜中書(shū)的本數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為:,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)).
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn)到兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)a2x(k∈R,a>0,e為自然對(duì)數(shù)的底數(shù)),且曲線f(x)在點(diǎn)(1,f(1))處的切線的斜率為e2﹣a2.
(1)求實(shí)數(shù)k的值,并討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)函數(shù)g(x),若對(duì)x1∈(0,+∞),x2∈R,使不等式f(x2)≤g(x1)﹣1成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com