18.若0≤x<π,則滿足方程tan(4x-$\frac{π}{4}$)=1的角的集合是{$\frac{π}{8}$,$\frac{3π}{8}$,$\frac{5π}{8}$,$\frac{7π}{8}$}.

分析 由題意,4x-$\frac{π}{4}$=kπ+$\frac{π}{4}$,求出x,根據(jù)0≤x<π,即可得出結(jié)論.

解答 解:由題意,4x-$\frac{π}{4}$=kπ+$\frac{π}{4}$,k∈Z
∴x=$\frac{1}{4}$kπ+$\frac{π}{8}$,
∵0≤x<π,
∴x=$\frac{π}{8}$,$\frac{3π}{8}$,$\frac{5π}{8}$,$\frac{7π}{8}$,
故答案為{$\frac{π}{8}$,$\frac{3π}{8}$,$\frac{5π}{8}$,$\frac{7π}{8}$}.

點(diǎn)評(píng) 本題考查正切函數(shù)的圖象與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示,汽車前反光鏡與軸截面的交線是拋物線的一部分,燈口所在的圓面與反光鏡的軸垂直,燈泡位于拋物線的焦點(diǎn)處,已知燈口的直徑是24cm,燈深10cm.那么燈泡與反光鏡的頂點(diǎn)(即截得拋物線的頂點(diǎn))距離為( 。
A.10 cmB.7.2 cmC.2.4 cmD.3.6 cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸上的橢圓C的焦距為2,且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過點(diǎn)(0,$\sqrt{2}$)且斜率為k的直線l與橢圓C有兩個(gè)不同的交點(diǎn)P和Q.
(1)求k的取值范圍;
(2)設(shè)橢圓C與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$與$\overrightarrow{AB}$共線?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線l:y=kx與雙曲線C:x2-y2=2交于不同的兩點(diǎn),則斜率k的取值范圍是( 。
A.(0,1)B.$(-\sqrt{2},\sqrt{2})$C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知正四棱錐V-ABCD的底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為$\sqrt{13}$,則它的表面積為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2+a|x-1|+1(a∈R),其中a≥0,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)向量$\overrightarrow{a}$=(x-1,4),$\overrightarrow$=(2,x+1),則“x=3”是“$\overrightarrow{a}$∥$\overrightarrow$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.關(guān)于x的方程($\frac{1}{π}$)x=$\frac{1+a}{1-a}$有負(fù)實(shí)數(shù)根,則a的取值范圍是(  )
A.(-1,1)B.(0,1)C.(-1,0)D.(-$\frac{2}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)是線段B1D上的兩個(gè)動(dòng)點(diǎn),且EF=$\frac{\sqrt{2}}{2}$,則下列結(jié)論錯(cuò)誤的是( 。
A.AC⊥BFB.直線AE、BF所成的角為定值
C.EF∥平面ABCD.三棱錐A-BEF的體積為定值

查看答案和解析>>

同步練習(xí)冊(cè)答案