(理做)根據(jù)表格中的數(shù)據(jù),可以判定函數(shù)f(x)=lnx-x+2有一個零點(diǎn)所在的區(qū)間為,(k-1,k)
(k∈N*),則k的值為( 。
x12345
lnx00.691.101.391.61
A、3
B、1
C、
2
D、4
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)零點(diǎn)的判定定理可知,使函數(shù)值一正一負(fù)及可.
解答: 解:由題意,
f(1)=0-1+2=1,
f(2)≈0.69-2+2=0.69;
f(3)≈1.10-3+2=0.1,
f(4)≈1.39-4+2<0,
故函數(shù)f(x)=lnx-x+2有一個零點(diǎn)所在的區(qū)間為(3,4),
故選D.
點(diǎn)評:本題考查了函數(shù)零點(diǎn)的判定定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,以兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的四邊形F1B1F2B2是一個面積為8的正方形(記為Q ).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C的左準(zhǔn)線與x軸的交點(diǎn),過點(diǎn)P的直線l與橢圓C相交于M,N兩點(diǎn)、.當(dāng)線段MN的中點(diǎn)G落在正方形Q內(nèi)(包括邊界)時,求直線L的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3+bx2+cx+d(x∈R)的圖象經(jīng)過原點(diǎn),且f(-1)=2和f(1)=-2分別是函數(shù)f(x)的極大值和極小值.
(Ⅰ)求a,b,c,d;
(Ⅱ)過點(diǎn)A(1,-3)作曲線y=f(x)的切線,求所得切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,-2,1)
b
=(2,x,3)
,若
a
⊥(
a
+
b
)
,則實(shí)數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x+3-x2>0的解集是( 。
A、{x|-1<x<3}
B、{x|x>3或x<-1}
C、{x|-3<x<1}
D、{x|x>1或x<-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等軸雙曲線經(jīng)過點(diǎn)(2
3
,-4)
,則雙曲線的實(shí)軸長為( 。
A、4
B、8
C、6
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在y軸上的橢圓
x2
10
+
y2
m
=1的長軸長為8,則m等于( 。
A、4B、8C、10D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)氣象中心觀察和預(yù)測:發(fā)生于M第的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km)
(1)直接寫出v(km/h)關(guān)于t(h)的函數(shù)關(guān)系式;
(2)當(dāng)t=20h,求沙塵暴所經(jīng)過的路程s(km);
(3)若N城位于M地的正南方向,且距M地650km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x2-4
(x<-2)
(1)求f(x)的反函數(shù)f-1(x);
(2)設(shè)a1=1,
1
an+1
=-f-1(an)(n∈N*)
,求an
(3)若Sn=a12+a22+…+an2,bn=Sn+1-Sn,是否存在最小正整數(shù)m使得對任意n∈N*,都有bn
m
25
成立?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案