Loading [MathJax]/jax/output/CommonHTML/jax.js
2.已知fx=cos2x32sin2x12
(1)求出f(x)圖象的對(duì)稱中心的坐標(biāo);
(2)△ABC三個(gè)內(nèi)角A、B、C所對(duì)邊為a、b、c,若f(A)+1=0,b+c=2.求a的最小值.

分析 (1)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,結(jié)合三角函數(shù)的圖象和性質(zhì),可得f(x)圖象的對(duì)稱中心的坐標(biāo);
(2)根據(jù)f(A)+1=0,求解出A,利用余弦定理建立關(guān)系,根據(jù)基本不等式求a的最小值.

解答 解:fx=cos2x32sin2x12,
化簡(jiǎn)可得:f(x)=12+12cos2x-32sin2x-12=cos(2x+π3
(1)令2x+π3=π2+kπ,解得x=π12+kπ2,k∈Z
∴f(x)的對(duì)稱中心為:(π12+12kπ,0),
(2)由(1)可知f(x)=cos(2x+π3
∵f(A)+1=0,即cos(2A+π3)+1=0,
∴cos(2A+π3)=-1.
∵0<A<π,
π3<2A+π37π3
∴2A+π3=π,∴A=π3
∵b+c=2,∴b2+c2=(b+c)2-2bc=4-2bc
由余弦定理,可得:a2=b2+c2-2bc•cosA=4-3bc≥4-3(b+c22=1.
當(dāng)且僅當(dāng)b=c=1時(shí),a取得最小值1.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì),余弦定理和基本不等式的運(yùn)用.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)f(x)=lnx-x2+x的單調(diào)減區(qū)間是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如表為某公司員工工作年限x(年)與平均月薪y(tǒng)(千元)對(duì)照表.已知y關(guān)于x的線性回歸方程為y=0.7x+0.35,則下列結(jié)論錯(cuò)誤的是( �。�
x3456
y2.5t44.5
A.回歸直線一定過點(diǎn)(4.5,3.5)
B.工作年限與平均月薪呈正相關(guān)
C.t的取值是3.5
D.工作年限每增加1年,工資平均提高700元
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如表是某廠1-4月份用水量(單位:百噸)的一組數(shù)據(jù):
月份x1234
用水量4.5432.5
由散點(diǎn)可知,用水量y與月份x之間由較好的線性相關(guān)關(guān)系,其線性回歸方程是y=0.7x+a,則a等于5.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)的定義域?yàn)镽,且fx2fx2,若f(0)=-1,則fx+2e2x1不等式的解集是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正項(xiàng)數(shù)列{an}中,a1=1,a2=2,2an2=an-12+an+22(n≥2),bn=1an+an+1記數(shù)列{bn}的前n項(xiàng)和為Sn,則S33的值是(  )
A.99B.33C.42D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=ax3+3x2+2,若f′(-1)=3,則a的值是( �。�
A.193B.163C.133D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|2x-1|+x+12的最小值為m.
(1)求m的值;
(2)若a,b,c是正實(shí)數(shù),且a+b+c=m,求證:2(a2+b2+c2)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f'(x)g(x)+f(x)g'(x)>0,且g(-1)=0,則不等式f(x)g(x)>0的解集是( �。�
A.(-1,0)∪(0,1)B.(-∞,1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹