與橢圓
共焦點且過點P(2,1)的雙曲線方程是( )
試題分析:在橢圓
中,
,∴
,∴焦點為
,設所求的雙曲線方程為:
,由雙曲線的定義可知:
,∴
,∴
,故雙曲線方程為:
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,點
分別是橢圓C:
的左、右焦點,過點
作
軸的垂線,交橢圓
的上半部分于點
,過點
作
的垂線交直線
于點
.
(1)如果點
的坐標為(4,4),求橢圓
的方程;
(2)試判斷直線
與橢圓
的公共點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知左焦點為
的橢圓過點
.過點
分別作斜率為
的橢圓的動弦
,設
分別為線段
的中點.
(1)求橢圓的標準方程;
(2)若
為線段
的中點,求
;
(3)若
,求證直線
恒過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
拋物線M:
的準線過橢圓N:
的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設點A的橫坐標為x
1,點C的橫坐標為x
2,曲線M上點D的橫坐標為x
1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設點A(
,0),B(
,0),直線AM、BM相交于點M,且它們的斜率之積為
.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線
過點F(1,0)且繞F旋轉(zhuǎn),
與圓
相交于P、Q兩點,
與軌跡C相交于R、S兩點,若|PQ|
求△
的面積的最大值和最小值(F′為軌跡C的左焦點).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,直線
與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
、
是橢圓
的左、右焦點,且離心率
,點
為橢圓上的一個動點,
的內(nèi)切圓面積的最大值為
.
(1) 求橢圓的方程;
(2) 若
是橢圓上不重合的四個點,滿足向量
與
共線,
與
共
線,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線的頂點與焦點分別是橢圓
的焦點和頂點,若雙曲線的兩條漸近線與橢圓的焦點構成的四邊形恰為正方形,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線方程
的離心率為
,其實軸與虛軸的四個頂點和橢圓
的四個頂點重合,橢圓G的離心率為
,一定有( )
查看答案和解析>>