已知f(x)=
lnx,x>0
x+2,x<0
,則f(x)>1
 的解集為( 。
A、(-1,0)∪(0,e)
B、(-∞,-1)∪(e,+∞)
C、(-1,0)∪(e,+∞)
D、(-∞,1)∪(0,e)
分析:本題函數(shù)是一個分段函數(shù),解此類不等式應(yīng)分段求解,然后再取它們的并集
解答:解:由題意,當(dāng)x>0時,有l(wèi)nx>1=lne,解得x>e符合題意
當(dāng)x<0時,x+2>1,得x>-1,故有-1/,x<0
綜上知不等式的解集是(-1,0)∪(e,+∞)
故選C
點評:本題考查對數(shù)函數(shù)的單調(diào)性與特殊點,求解的關(guān)鍵是理解分段函數(shù)型不等式求解的原理,以及利用對數(shù)的單調(diào)性解不等式,本題屬于基本性質(zhì)運用題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx-
a
x

(I)當(dāng)a>0時,判斷f(x)在定義域上的單調(diào)性;
(II)若f(x)在[1,e](e是自然對數(shù)的底)上的最小值為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=
3
2
-
a
x
,(a∈R)

①若方程e2f(x)=g(x)在區(qū)間[
1
2
,1]
上有解,求a的取值范圍;
②若函數(shù)h(x)=
1
2
x2-ax+(a-1)f(x)(a≥1)
,討論函數(shù)h(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)已知f(x)=
lnx,(x>0)
ex.(x≤0)
(e=2.718…),則不等式f(x)-1≤0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州一模)已知f(x)=lnx,g(x)=
1
3
x3+
1
2
x2+mx+n
,直線l與函數(shù)f(x),g(x)的圖象都相切于點(1,0).
(1)求直線l的方程及g(x)的解析式;
(2)若h(x)=f(x)-g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的極大值.

查看答案和解析>>

同步練習(xí)冊答案