設函數(shù)f(x)的定義域關(guān)于原點對稱,且滿足①f(x1-x2)=
f(x1)f(x2)+1
f(x2)-f(x1)
;②存在正常實數(shù)a,使f(a)=1.求證:
(1)f(x)是奇函數(shù);
(2)f(x)是周期函數(shù),并且有一個周期為4a.
考點:抽象函數(shù)及其應用,函數(shù)奇偶性的判斷,函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應用
分析:(1)將x1-x2和x2-x1分別代入抽象表達式①,即可判斷f(x1-x2)與f(x2-x1)之間互為相反數(shù),并推斷函數(shù)f(x)為奇函數(shù).
(2)根據(jù)條件f(a)=1,結(jié)合抽象函數(shù)的關(guān)系以及周期的定義進行推導即可.
解答: 解:(1)不妨令x=x1-x2,
則f(-x)=f(x2-x1)=
f(x2)f(x1)+1
f(x1)-f(x2)
=-
f(x1)f(x2)+1
f(x2)-f(x1)
=-f(x1-x2)=-f(x),
∴f(x)是奇函數(shù);
(2)若f(a)=1,則f(-a)=-1,
f(x-a)=
f(x)f(a)+1
f(a)-f(x)
=
f(x)+1
1-f(x)
,
則f(x-2a)=f(x-a-a)=
f(x-a)+1
1-f(x-a)
=
f(x)+1
1-f(x)
+1
1-
f(x)+1
1-f(x)
=
f(x)+1+1-f(x)
1-f(x)-f(x)-1
=-
1
f(x)
,
即 f(x-4a)=f(x-2a-2a)=-
1
f(x-2a)
=f(x),
∴f(x-4a)=f(x),
∴f(x)是周期函數(shù),4a是一個周期.
點評:本題主要考查抽象函數(shù)的應用以及函數(shù)奇偶性和周期性的判斷和求解,利用定義是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

四棱錐P-ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.點E在棱PA上,且PE=2EA.
(Ⅰ)求異面直線PA與CD所成的角;
(Ⅱ)求證:PC∥平面EBD;
(Ⅲ)求二面角A-BE-D的大小.(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1+x+x2)(x-
1
x
6的展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
5i
(2-i)(2+i)
(i是虛數(shù)單位)的共軛復數(shù)為( 。
A、i
B、-i
C、
5
3
i
D、-
5
3
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)=x3-2x+5,求適合下列條件的自變量的增量和對應的函數(shù)增量:
(1)當x由2變到3;
(2)當x由2變到1;
(3)當x由2變到2+△x;
(4)當自變量由xn變到x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設甲、乙兩個圓柱的底面積分別為S1、S2,體積分別為υ1,υ2,若它們的側(cè)面積相等,且
S1
S2
=
16
9
,則
υ1
υ2
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一個所有棱長均為a的正四棱錐P-ABCD,還有一個所有棱長均為a的正三棱錐,將此三棱錐的一個面與正四棱錐的一個側(cè)面完全重合的黏在一起,得到一個如圖所示的多面體;
(1)證明:P,E,B,A四點共面;
(2)求三棱錐A-PDE的體積;
(3)在底面ABCD內(nèi)找一點M,使EM⊥面PBC,指出M的位置,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

李紅為班級購買筆記本作晚會上的獎品,回來時向生活委員劉磊交賬時說:“共買了36本,有兩種規(guī)格,單價分別為1.80元和2.60元,去時我領了100元,現(xiàn)在找回27.60元“劉磊算了一下說:“你一定搞錯了“李紅一想,發(fā)覺的確不對,因為他把自己口袋里原有的2元錢一起當作找回的錢款交給了劉磊,請你算一算兩種筆記本各買了多少?想一想有沒有可能找回27.60元,試用方程的知識給予解釋.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(cosx)=cos17x,則f(sinx)的結(jié)果是( 。
A、sin17x
B、cos17x
C、sin
17
2
x
D、cos
17
2
x

查看答案和解析>>

同步練習冊答案