【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第 個(gè)圖形包含 個(gè)小正方形.
(Ⅰ)求出 ;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出 與 的關(guān)系式,并根據(jù)你得到的關(guān)系式求 的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說(shuō)法正確的序號(hào)是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對(duì)稱軸;③( ,0)為fn(x)(n∈N*)的對(duì)稱中心:④|fn(x)|≤n(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形 , , ,以 的中點(diǎn) 為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系 .
(1)求以 為焦點(diǎn),且過(guò) 兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,過(guò)點(diǎn) 作直線 與橢圓交于不同的兩點(diǎn) ,設(shè) ,點(diǎn) 坐標(biāo)為 ,若 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn) 的極坐標(biāo)為 ,曲線 的參數(shù)方程為 為參數(shù)).
(1)直線 過(guò) 且與曲線 相切,求直線 的極坐標(biāo)方程;
(2)點(diǎn) 與點(diǎn) 關(guān)于 軸對(duì)稱,求曲線 上的點(diǎn)到點(diǎn) 的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),
(1)證明:PA∥平面EDB
(2)證明:平面BDE平面PCB
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+a(x2﹣3x+2),其中a為參數(shù).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)討論函數(shù)f(x)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(3)若對(duì)任意x∈[1,+∞),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(2)若關(guān)于的不等式在有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖動(dòng)直線 與拋物線 交于點(diǎn) ,與橢圓 交于拋物線右側(cè)的點(diǎn) 為拋物線的焦點(diǎn),則 的最大值為( )
A.
B.
C.2
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com