如圖,在△OAB中,C為OA上的一點,且數(shù)學公式是BC的中點,過點A的直線l∥OD,P是直線l上的任意點,若數(shù)學公式,則λ12=________.

-
分析:根據(jù)OD是△OBC的中線,得=+.由直線l∥OD,可得存在實數(shù)k使=k,再化簡得到=+(+,結(jié)合已知等式可得1+2,由此即可算出則λ12的值.
解答:∵D是BC的中點,∴=+
,∴=
∵直線l∥OD,∴存在實數(shù)k,使=k,
因此,=+k=+k(+)=+(+,
∵由已知,得
∴根據(jù)平面向量基本定理,得1+2
因此,λ12=-(+)=-
故答案為:-
點評:本題在△OAB中,給出邊的三等分點C和△OBC的中線OD,探索向量表示成的線性組合問題,著重考查了平面向量的線性運算、平面向量的基本定理及其意義等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,
OC
=
1
3
OA
,
OD
=
1
2
OB
,AD與BC交于點M,
設(shè)
OA
=
a
,
OB
=
b
,
(1)試用向量
a
b
表示
OM
;
(2)在線段AC上取一點E,線段BD上取一點F,使EF過M點,
OE
OA
OF
OB
,求證:
1
λ
+
2
μ
=5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•杭州二模)如圖,在△OAB中,C為OA上的一點,且
OC
=
2
3
OA
,D
是BC的中點,過點A的直線l∥OD,P是直線l上的任意點,若
OP
=λ1
OB
+λ2
OC
,則λ12=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△OAB中,已知|O
A
| =2,|O
B
| =2
3
,∠AOB=90°,單位圓O與OA交于C,A
D
B
,λ∈(0,1)
,P為單位圓O上的動點.
(1)若O
C
+O
P
=O
D
,求λ的值;
(2)記|P
D
|
的最小值為f(λ),求f(λ)的表達式及f(λ)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△OAB中,延長BA到C,使AC=BA,在OB上取點D,使DB=
1
3
OB,DC與OA交于E,設(shè)
OA
=
a
,
OB
=
b
,用
a
,
b
表示向量
OC
,
DC
,
DE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△OAB中,已知P為線段AB上的一點,且|
AP
|=2|
PB
|.
(Ⅰ)試用
OA
,
OB
表示
OP
;
(Ⅱ)若|
OA
|
=3,
|OB|
=2,且∠AOB=60°,求
OP
AB
的值.

查看答案和解析>>

同步練習冊答案