5.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y-1≤0.\end{array}\right.$若目標(biāo)函數(shù)z=ax+y(a>0)僅在(3,0)點(diǎn)處取得最大值,則a的取值范圍是( 。
A.$a>\frac{1}{2}$B.a>$\frac{1}{3}$C.0<a<$\frac{1}{2}$D.a>0

分析 根據(jù)已知的約束條件畫出可行域,再用圖象判斷,求出目標(biāo)函數(shù)的最大值.

解答 解:畫出可行域如圖所示,
其中B(3,0),C(1,1),D(0,1),
若目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(3,0)取得最大值,
由圖知,直線z=ax+y的斜率小于直線x+2y-3=0的斜率,
即-a<-$\frac{1}{2}$,
解得a>$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是線性規(guī)劃,處理的思路為:借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=2xlnx,g(x)=x3+ax2-x+2.
(1)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為$(-\frac{1}{3},1)$,求函數(shù)g(x)的解析式;
(2)在(1)的條件下,求函數(shù)y=g(x)的圖象在點(diǎn)P(-1,g(-1))處的切線方程;
(3)已知不等式f(x)≤g'(x)+2恒成立,若方程aea-m=0恰有兩個(gè)不等實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=x3-3x-1,若對(duì)于區(qū)間[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,則實(shí)數(shù)t的最小值是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=x3-ax在x=1處有極值,則實(shí)數(shù)a為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.用數(shù)列歸納法證明$\frac{1}{2}+cosα+cos2α+…+cosnα=\frac{{sin(n+\frac{1}{2})α}}{{2sin\frac{α}{2}}}$時(shí),驗(yàn)證n=1時(shí),左邊式子為(  )
A.$\frac{1}{2}$B.cosαC.$\frac{1}{2}+cosα$D.$\frac{{sin\frac{3}{2}α}}{{2sin\frac{α}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知△ABC中,頂點(diǎn)A(2,1),B(-2,0),∠C的平分線所在直線的方程為x+y=0.
(1)求頂點(diǎn)C的坐標(biāo);
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知橢圓C的中心在原點(diǎn),它的一個(gè)焦點(diǎn)與拋物線${y^2}=4\sqrt{6}x$的焦點(diǎn)相同,又橢圓C上有一點(diǎn)M(2,1),直線l平行于OM且與橢圓C交于A,B兩點(diǎn),連接MA,MB.
(1)求橢圓C的方程;
(2)求證:直線MA,MB與x軸所構(gòu)成的三角形總是以x軸上所在線段為底邊的等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線C1:x2=4y的焦點(diǎn)F也是橢圓C2:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}$+=1(a>b>0)的一個(gè)焦點(diǎn).C1與C2的公共弦長(zhǎng)為2$\sqrt{6}$.
(Ⅰ)求C2的方程;
(Ⅱ)過點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C、D兩點(diǎn),且$\overrightarrow{AC}$,$\overrightarrow{BD}$同向.若|AC|=|BD|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$-m(lnx+$\frac{1}{x}$)(m為實(shí)數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)m>1時(shí),討論f(x)的單調(diào)性;
(Ⅱ)若g(x)=x2f′(x)-xex在($\frac{3}{2}$,3)內(nèi)有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
(Ⅲ)當(dāng)m=1時(shí),證明:xf(x)+xlnx+1>x+$\frac{ln(x+1)}{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案