16.高二年級有男生560人,女生420人,為了解學生職業(yè)規(guī)劃,現(xiàn)用分層抽樣的方法從該年級全體學生中抽取一個容量為280人的樣本,則此樣本中男生人數(shù)為( 。
A.120B.160C.280D.400

分析 先根據(jù)男生和女生的人數(shù)做出年紀大總人數(shù),用要抽取得人數(shù)除以總人數(shù)得到每個個體被抽到的概率,用男生人數(shù)乘以概率,得到結果.

解答 解:∵有男生560人,女生420人,
∴年級共有560+420=980,
∵用分層抽樣的方法從該年級全體學生中抽取一個容量為280的樣本,
∴每個個體被抽到的概率是$\frac{280}{980}$=$\frac{2}{7}$,
∴要從男生中抽取560×$\frac{2}{7}$=160,
故選:B.

點評 本題考查分層抽樣方法,本題解題的關鍵是在抽樣過程中每個個體被抽到的概率相等,這是解題的依據(jù),本題是一個基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.拋物線 M:y2=2px(p>0)與橢圓 $N:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$有相同的焦點F,拋物線M與 橢圓N交于A,B,若F,A,B共線,則橢圓N的離心率等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$則f(f(e))=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,a、b、c分別為A、B、C所對的邊,且2acosB+bcosA=2c,則△ABC是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.斜三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知,在△ABC中,a、b、c分別為角A、B、C的對邊,且asinB=$\sqrt{3}$bcosA.
(1)求角A的大小;
(2)設△ABC的面積為$\sqrt{3}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知兩個圓O1和O2,它們的半徑分別是2和4,且|O1O2|=8,若動圓M與圓O1內(nèi)切,又與O2外切,則動圓圓心M的軌跡方程是( 。
A.B.橢圓C.雙曲線一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設點M(3,t),若在圓O:x2+y2=6上存在兩點A,B,使得∠AMB=90°,則t的取值范圍是-$\sqrt{3}$≤t≤$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.命題p:?x∈R,2${\;}^{{x}^{2}-1}$<$\frac{1}{4}$,命題q:若M為曲線y2=4x2上一點,A($\frac{5}{2}$,0),則|MA|的最小值為$\sqrt{5}$,那么下列命題為真命題的是( 。
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,在棱長均為2的正三棱柱ABC-A1B1C1中,點M是側棱AA1的中點,點P、Q分別是側面BCC1B1、底面ABC內(nèi)的動點,且A1P∥平面BCM,PQ⊥平面BCM,則點Q的軌跡的長度為$\frac{4}{3}$.

查看答案和解析>>

同步練習冊答案