已知

(1)若時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(3)令是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.

                                         

(2)函數(shù)上是減函數(shù)

(3)假設(shè)存在實(shí)數(shù),使上的最小值是3

                                  8分

當(dāng)時(shí),,上單調(diào)遞減,

當(dāng)時(shí),即上恒成立,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆廣東省汕頭市高三四校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)
已知
(1)若的圖象有與軸平行的切線,求的取值范圍;
(2)若時(shí)取得極值,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省廣州市高三9月三校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知

(1)若時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(3)令是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù)的最小值是3,

若存在,求出的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣州市高二第二學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題

(本小題滿分14分)已知.

(1)若時(shí),恒成立,求的取值范圍;

(2)若,解關(guān)于的不等式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若函數(shù)對(duì)于其定義域內(nèi)的某一數(shù),有,則稱的一個(gè)不動(dòng)點(diǎn). 已知函數(shù).

(1) 當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2) 若對(duì)任意的實(shí)數(shù)b,函數(shù)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;

(3) 在(2)的條件下,若圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B的中點(diǎn)C在函數(shù)的圖象上,求b的最小值.
(參考公式:的中點(diǎn)坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案