函數(shù)y=sin2x+2cosx在區(qū)間[-
3
,
π
3
]上的值域為( 。
A、[-
1
4
,2]
B、[-
1
4
,2)
C、[-
1
4
,
7
4
]
D、(-
1
4
,
7
4
]
分析:根據(jù)同角三角函數(shù)關(guān)系,我們可將函數(shù)的解析式化為y=1-cos2x+2cosx,結(jié)合函數(shù)的定義域為[-
3
,
π
3
],我們可以將問題轉(zhuǎn)化為二次函數(shù)在定區(qū)間上的值域問題,結(jié)合余弦函數(shù)及二次函數(shù)的性質(zhì),即可得到答案.
解答:解:∵x∈[-
3
,
π
3
]
∴cosx∈[-
1
2
,1]
又∵y=sin2x+2cosx=1-cos2x+2cosx=-(cosx-1)2+2
則y∈[-
1
4
,2]
故選A
點評:本題考查的知識點是正弦函數(shù)的定義域和值域,其中利用換元法將問題為二次函數(shù)在定區(qū)間上的值域問題,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間(0,
π
2
)
上的函數(shù)y=sin2x的圖象與y=
1
2
cosx
圖象的交點橫坐標(biāo)為α,則tanα的值為
15
15
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確命題的序號是
 

①函數(shù)y=sin(2x+
π
6
)
的圖象可由函數(shù)y=sin2x的圖象向左平移
π
6
單位得到;
②△ABC中,a,b,c分別是角A,B,C的對邊,已知A=60°,a=7,則b+c不可能等于15;
③若函數(shù)f(x)的導(dǎo)數(shù)為f'(x),f(x0)為f(x)的極值的充要條件是f'(x0)=0;
④在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=sin(
2
3
x+
2
)是偶函數(shù);
②函數(shù)y=2|x|的最小值是1;
③函數(shù)y=ln(x2+1)的值域是R;
④函數(shù)y=sin2x的圖象向左平移
π
4
個單位,得到y(tǒng)=sin(2x+
π
4
)的圖象
⑤函數(shù)f(x)=2x-x2只有兩個零點;
其中正確命題的序號是
①②⑤
①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin2x的圖象沿 x軸向左平移
π
6
個單位,縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)后得到函數(shù)y=f(x)圖象,對于函數(shù)y=f(x)有以下四個判斷:
①該函數(shù)的解析式為y=2sin(2x+
π
6
);  
②該函數(shù)圖象關(guān)于點(
π
3
,0
)對稱; 
③該函數(shù)在[0,
π
6
]上是增函數(shù);
④函數(shù)y=f(x)+a在[0,
π
2
]上的最小值為
3
,則a=2
3

其中,正確判斷的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x的圖象在點P(
π
6
1
4
)
處的切線的斜率是
3
2
3
2

查看答案和解析>>

同步練習(xí)冊答案