9.設(shè)集合P={x|0≤x≤3},N={x∈Z|-3<x<3},則P∩N=( 。
A.{x|0≤x<3}B.{x|-3<x<3}C.{0,1,2}D.{0,1,3}

分析 例舉出N中的元素,找出P與N的交集即可.

解答 解:∵P={x|0≤x≤3},N={x∈Z|-3<x<3}={-2,-1,0,1,2},
∴P∩N={0,1,2},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.拋物線y2=8x的準(zhǔn)線l的方程為x=-2,若直線l過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn),且雙曲線的離心率為2,則該雙曲線的方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有個(gè)小偷在警察面前作了如下辯解:是我的錄像機(jī),我就一定能把它打開.看,我把它打開了.所以它是我的錄像機(jī).請問這一推理錯(cuò)在( 。
A.大前提B.小前提C.結(jié)論D.以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{13}$,則向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足log2an=1+log2an-1n∈N*,n≥2,且a1=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令cn=(3n-1)•an,求數(shù)列{cn}的前n項(xiàng)和Tn;
(Ⅲ)設(shè)數(shù)列{bn}滿足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整數(shù)m,n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}是遞增的等比數(shù)列,且a2+a3=6,a1a4=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{a_1}{b_1}$+$\frac{a_2}{b_2}$+…+$\frac{a_n}{b_n}$=2n•(n2+n+2)(n∈N*),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)(xlnx)′=lnx+1,那么$\int_{1}^{e}$lnxdx=( 。
A.1B.eC.e-1D.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC中角A、B、C所對(duì)的邊分別為a、b、c,若a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,則△ABC的面積為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知正項(xiàng)數(shù)列{an}滿足a1=2,a2=1,且$\frac{a_n}{{{a_{n+1}}}}$+$\frac{a_n}{{{a_{n-1}}}}$=2,則a12的值為( 。
A.$\frac{1}{6}$B.6C.$\frac{1}{3}$D.3

查看答案和解析>>

同步練習(xí)冊答案