精英家教網 > 高中數學 > 題目詳情
已知A={x|x2-2x-3<0},B={x|x2-5x+6>0},
求(1)A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求ax2+x-b<0的解集.
分析:(1)先化簡A,B再按照交集的定義求解計算.
(2)由(1)得A∩B={x|-1<x<2},所以-1,2是方程x2+ax+b=0的兩根,求出a,b確定出ax2+x-b<0,再求解.
解答:解:(1)由題意得:A={x|-1<x<3},B={x|x<2或x>3},
∴A∩B={x|-1<x<2}.
(2)由題意得:-1,2是方程x2+ax+b=0的兩根
所以
-1+2=-a
-1•2=b
,解之得
a=-1
b=-2
,
所以-x2+x+2<0,其解集為{x|x<-1或x>2}.
點評:本題考查二次不等式求解,考查數形結合的思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,則實數P的取值范圍
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范圍.

查看答案和解析>>

同步練習冊答案