在一個口袋內(nèi)裝有7個相同的球,其中三個球標有數(shù)字0,4個球標有數(shù)字1,若從袋中摸出3個球,那么摸出的三個球所標數(shù)字之和小于2或大于3的概率是多少?
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:將“摸出的五個球所標數(shù)字之和小于2或大于3”記為事件A,其對立事件
.
A
,由題意求得P(
.
A
),進而根據(jù)對立事件概率減法公式,得到答案.
解答: 解:從裝有7個相同的球的袋中摸出3個球,共有
C
3
7
=35種情況,
將“摸出的五個球所標數(shù)字之和小于2或大于3”記為事件A,
則“摸出的五個球所標數(shù)字之和等于2或等于3”為事件
.
A

.
A
共包含
C
2
4
C
1
3
+
C
3
4
=18+4=22種情況,
故P(
.
A
)=
22
35
,
故P(A)=1-P(
.
A
)=
13
35
點評:本題考查的知識點是古典概型概率計算公式,其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,右頂點、上頂點分別為點A、B,且|AB|=
5
2
|BF|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若點M(-
16
17
2
17
)在橢圓C內(nèi)部,過點M的直線l交橢圓C于P、Q兩點,M為線段PQ的中點,且OP⊥OQ.求直線l的方程及橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,M(x1,y1),N(x2,y2)是橢圓
x2
4
+
y2
2
=1上的點,且x1x2+2y1y2=0,設(shè)動點P滿足
OP
=
OM
+2
ON

(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)若直線l:y=x+m(m≠0)與曲線C交于A,B兩點,求三角形OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

矩形PQRS的兩條對角線相交于點M(1,0),PQ邊所在的直線方程為x-y-2=0,原點O(0,0)在PS邊所在直線上,
(1)矩形PQRS外接圓的方程;
(2)設(shè)A(0,t),B(0,t+6)(-5≤t≤-2),若(1)的圓是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
2
x-1

(1)證明函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(2)當x∈[2,6]時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:為了保護河上古橋OA,規(guī)劃建一座新橋BC,同時設(shè)立一個圓形保護區(qū).經(jīng)測量,點A位于點O正北方向60m處,點C位于點O正東方向170m處(OC為河岸).規(guī)劃要求:新橋BC與河岸AB垂直,保護區(qū)的邊界為圓心M(在線段OA上)與BC相切的圓.建立如圖所示的直角坐標系,已知新橋BC所在直線的方程為:4x+3y-680=0.
(1)求新橋端點B的坐標;
(2)當圓形保護區(qū)的圓心M在古橋OA所在線段上(含端點)運動時,求圓形保護區(qū)的面積的最小值,并指出此時圓心M的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x+1|+|x-2|;
(1)解不等式f(x)≥5;
(2)若對任意實數(shù)x,不等式|x+1|+|x-2|>ax恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式ax2+bx+2>0的解集是{x|-
1
2
<x<1},求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為2的正方形ABCD內(nèi)部隨機取一點M,則△MAB的面積大于1的概率是
 

查看答案和解析>>

同步練習冊答案