如圖所示,空間中有一直角三角形,為直角,,,現(xiàn)以其中一直角邊為軸,按逆時(shí)針方向旋轉(zhuǎn)后,將點(diǎn)所在的位置記為,再按逆時(shí)針方向繼續(xù)旋轉(zhuǎn)后,點(diǎn)所在的位置記為.
(1)連接,取的中點(diǎn)為,求證:面面;
(2)求與平面所成的角的正弦值.
(1)詳見解析;(2).
解析試題分析:(1)利用與全等得到和,再利用三線合一得到,,利用直線與平面垂直的判定定理得到平面,再利用平面與平面垂直的判定定理證明平面平面;(2)取的中點(diǎn),連接,過點(diǎn)作的垂線,垂足為點(diǎn),
于是得到為直線與平面所成的角,利用中位線得到,于是得到直線與平面所成的角等于,最后在計(jì)算即可.
(1)由題意可知:與全等,
,,為的中點(diǎn),
,,
又,平面,平面,
平面平面;
(2)由題意可知:為的中點(diǎn),取的中點(diǎn)為,連接,
過作的垂線,垂足為,連接,
由(1)可知面面,面,
是在平面上的射影,為與平面所成的角,
,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且.
(1)求證:EF∥平面BDC1;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點(diǎn).
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.
(1)當(dāng)CF=1時(shí),求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,AC,,點(diǎn)M在線段PD上.
(1)求證:平面PAC;
(2)若二面角M-AC-D的大小為,試確定點(diǎn)M的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方體中,已知為棱上的動(dòng)點(diǎn).
(1)求證:;
(2)當(dāng)為棱的中點(diǎn)時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com