拋物線的焦點(diǎn)到雙曲線的漸近線的距離為(   )
A.B.C.D.
A

由曲線對(duì)稱性,取雙曲線的一條漸近線,即,又拋物線的焦點(diǎn)為,所以焦點(diǎn)到雙曲線的漸近線的距離為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(2)小題8分)
已知雙曲線C:的一個(gè)焦點(diǎn)是,且。
(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線C的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍;并證明中點(diǎn)在曲線上。
(3)設(shè)(2)中直線與雙曲線C的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.
已知拋物線為常數(shù)),為其焦點(diǎn).
(1)寫出焦點(diǎn)的坐標(biāo);
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),且,求直線的斜率;
(3)若線段是過拋物線焦點(diǎn)的兩條動(dòng)弦,且滿足,如圖所示.求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M之間運(yùn)動(dòng).
(1)當(dāng)時(shí),求橢圓的方程;
(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓與雙曲線均為正數(shù))有共同的焦點(diǎn)F1F2,P是兩曲線的一個(gè)公共點(diǎn),則等于           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過直角坐標(biāo)平面中的拋物線的焦點(diǎn)作一條傾斜角為的直線與拋物線相交于A,B兩點(diǎn)。
(1)用表示A,B之間的距離;
(2)證明:的大小是與無(wú)關(guān)的定值,并求出這個(gè)值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn),直線,為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知圓過定點(diǎn),圓心在軌跡上運(yùn)動(dòng),且圓軸交于兩點(diǎn),設(shè),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

A、B是雙曲線C的兩個(gè)頂點(diǎn),直線l與實(shí)軸垂直,與雙曲線C交于PQ兩點(diǎn),若,則雙曲線C的離心率e   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P是雙曲線上的動(dòng)點(diǎn),F(xiàn)1、F2分別是其左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),則的取值范圍是         

查看答案和解析>>

同步練習(xí)冊(cè)答案