已知函數(shù)是奇函數(shù),(其中)
(1)求實(shí)數(shù)m的值;
(2)在時(shí),討論函數(shù)f(x)的增減性;
(3)當(dāng)x時(shí),f(x)的值域是(1,),求n與a的值。

(1);(2)上都是增函數(shù);(3)

解析試題分析:(1)奇函數(shù)對應(yīng)的是,由此可求出;(2)對函數(shù),判斷它的單調(diào)性,應(yīng)先求出定義域,然后在定義域的兩個(gè)區(qū)間上分別用單調(diào)性的定義來說明函數(shù)的單調(diào)性,這里可以先討論對數(shù)的真數(shù)的單調(diào)性,如設(shè),,判斷出這個(gè)差是正數(shù)后,即得,而由于,則有,于是可得函數(shù)在上是遞增的;(3)已知條件是函數(shù)的值域是,因此我們可以由值域來求自變量的取值范圍,即,由于,不等式可轉(zhuǎn)化為,故,這就應(yīng)該是已知的范圍,從而有,可得結(jié)論.
試題解析:(1)         4分
(2)由(1),定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/13/7/1zxuj3.png" style="vertical-align:middle;" />.         5分
討論在上函數(shù)的單調(diào)性.
任取、,設(shè),令,則,,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/7/urz3j2.png" style="vertical-align:middle;" />,,,所以,
所以.          7分
又當(dāng)時(shí),是減函數(shù),所以.由定義知在上函數(shù)是增函數(shù).         8分
又因?yàn)楹瘮?shù)是奇函數(shù),所以在上函數(shù)也是增函數(shù).        9分
(3)當(dāng)時(shí),要使的值域是,則,所以,即,         11分
,上式化為,又,所以當(dāng)時(shí),;當(dāng)時(shí),;         13分
因而,欲使的值域是,必須,所以對上述不等式,當(dāng)且僅當(dāng)時(shí)成立,所以解得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)對任意實(shí)數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負(fù)數(shù),且f (x)在區(qū)間[0,2]上有表達(dá)式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)寫出f(x)在[-3,3]上的表達(dá)式,并討論函數(shù)f(x)在[-3,3]上的單調(diào)性;
(3)求出f(x)在[-3,3]上的最小值與最大值,并求出相應(yīng)的自變量的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某化工企業(yè)2012年底投入100萬元購入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元.設(shè)該企業(yè)使用該設(shè)備x年的年平均污水處理費(fèi)用為y(單元:萬元).
(1)用x表示y;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備.求該企業(yè)幾年后需要重新更換新的污水處理設(shè)備.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=loga(x+1)(a>1),若函數(shù)yg(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)對稱的點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象.
(1)寫出函數(shù)g(x)的解析式;
(2)當(dāng)x∈[0,1)時(shí)總有f(x)+g(x)≥m成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)定義在區(qū)間都有不恒為零.
(1)求的值;
(2)若求證:;
(3)若求證:上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

兩城相距,在兩地之間距地建一核電站給兩城供電.為保證城市安全,核電站距城市距離不得少于.已知供電費(fèi)用(元)與供電距離()的平方和供電量(億度)之積成正比,比例系數(shù),若城供電量為億度/月,城為億度/月.
(Ⅰ)把月供電總費(fèi)用表示成的函數(shù),并求定義域;
(Ⅱ)核電站建在距城多遠(yuǎn),才能使供電費(fèi)用最小,最小費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,其中.函數(shù)在區(qū)間上有最大值為4,設(shè).
(1)求實(shí)數(shù)的值;
(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)命題pf(x)=在區(qū)間(1,+∞)上是減函數(shù);命題qx1x2是方程x2ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1x2|對任意的實(shí)數(shù)a∈[-1,1]恒成立.若pq為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案