【題目】如圖,在三棱錐A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點(diǎn).
(1)證明:DQ∥平面CPM;
(2)若二面角C﹣AB﹣D的大小為 ,求∠BDC的正切值.
【答案】
(1)證明:取AB的中點(diǎn)E,
則 ,所以EQ∥PC.
又EQ平面CPM,所以EQ∥平面CPM.
又PM是△BDE的中位線,所以DE∥PM,
從而DE∥平面CPM.
所以平面DEQ∥平面CPM,
故DQ∥平面CPM.
(2)解法1:由AD⊥平面BCD知,AD⊥CM
由BC=CD,BM=MD,知BD⊥CM,
故CM⊥平面ABD.
由(1)知DE∥PM,而DE⊥AB,故PM⊥AB.
所以∠CPM是二面角C﹣AB﹣D的平面角,
即 .
設(shè)PM=a,則 , ,
在Rt△CMD中, .
所以∠BDC的正切值為 .
解法2:以M為坐標(biāo)原點(diǎn),MC,MD,ME所在的直線分別為x軸,y軸,z軸,
建立如圖所示的空間直角坐標(biāo)系.
設(shè)MC=a,MD=b,則C(a,0,0),B(0,﹣b,0),A(0,b,2b)
則 ,
設(shè) 平面ABC的一個法向量,
則 即 取
平面ABD的一個法向量為 ,
所以 ,所以
在Rt△CMD中,
所以∠BDC的正切值為 .
【解析】(1)取AB的中點(diǎn)E,則EQ∥PC,從而EQ∥平面CPM,由中位線定理得DE∥PM,從而DE∥平面CPM,進(jìn)而平面DEQ∥平面CPM,由此能證明DQ∥平面CPM.(2)法1:推導(dǎo)出AD⊥CM,BD⊥CM,從而CM⊥平面ABD,進(jìn)而得到∠CPM是二面角C﹣AB﹣D的平面角,由此能求出∠BDC的正切值.法2:以M為坐標(biāo)原點(diǎn),MC,MD,ME所在的直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出∠BDC的正切值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求實(shí)數(shù)x的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(﹣1,4)及圓C:(x﹣2)2+(y﹣3)2=1.則下列判斷正確的序號為 .
①點(diǎn)P在圓C內(nèi)部;
②過點(diǎn)P做直線l,若l將圓C平分,則l的方程為x+3y﹣11=0;
③過點(diǎn)P做直線l與圓C相切,則l的方程為y﹣4=0或3x+4y﹣13=0;
④一束光線從點(diǎn)P出發(fā),經(jīng)x軸反射到圓C上的最短路程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有60m長的鋼材,要制作如圖所示的窗框:
(1)求窗框面積y與窗框?qū)抶的函數(shù)關(guān)系;
(2)當(dāng)窗框?qū)挒槎嗌倜讜r(shí),面積y有最大值?最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知sinAsinB=sinCtanC.
(1)求 的值:
(2)若a= c,且△ABC的面積為4,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方體ABCD﹣A1B1C1D1中,AB=2,AA1=1,若二面角A1﹣BD﹣A的大小為 ,則BD1與面A1BD所成角的正弦值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com