已知函數(shù),以點(diǎn)為切點(diǎn)作函數(shù)圖像的切線,直線與函數(shù)圖像及切線分別相交于,記
(1)求切線的方程及數(shù)列的通項(xiàng);
(2)設(shè)數(shù)列的前項(xiàng)和為,求證:

(1)切線的方程為,數(shù)列的通項(xiàng)公式為;(2)詳見(jiàn)試題解析.

解析試題分析:(1)由導(dǎo)數(shù)的幾何意義,先對(duì)函數(shù)求導(dǎo),求導(dǎo)函數(shù)處的函數(shù)值,即得切線的斜率,最后由直線的點(diǎn)斜式方程即可求得切線的方程,進(jìn)一步結(jié)合已知條件可得的坐標(biāo),由兩點(diǎn)間的距離公式可得數(shù)列的通項(xiàng);(2)首先寫(xiě)出數(shù)列的前項(xiàng)和的表達(dá)式,根據(jù)數(shù)列通項(xiàng)公式的結(jié)構(gòu)特征選擇裂項(xiàng)相消法求和,進(jìn)而可證明不等式
試題解析:(1)對(duì)求導(dǎo),得,則切線方程為:,即,易知,,
=
(2)==,===<1.
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.?dāng)?shù)列通項(xiàng)公式及前項(xiàng)和的求法(裂項(xiàng)相消法);3.?dāng)?shù)列不等式的證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=lnx-ax(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一矩形鐵皮的長(zhǎng)為8 cm,寬為5 cm,在四個(gè)角上截去四個(gè)相同的小正方形,制成一個(gè)無(wú)蓋的小盒子,問(wèn)小正方形的邊長(zhǎng)為多少時(shí),盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=x3ax2ax,g(x)=2x2+4xc.
(1)試問(wèn)函數(shù)f(x)能否在x=-1時(shí)取得極值?說(shuō)明理由;
(2)若a=-1,當(dāng)x∈[-3,4]時(shí),函數(shù)f(x)與g(x)的圖象有兩個(gè)公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1處的切線方程.
(2)若不等式f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)時(shí)都取得極值.
(1)求的值及的極大值與極小值;
(2)若方程有三個(gè)互異的實(shí)根,求的取值范圍;
(3)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù), 
(1)若,求曲線處的切線方程;
(2)若對(duì)任意的,都有恒成立,求的最小值;
(3)設(shè),,若,為曲線的兩個(gè)不同點(diǎn),滿(mǎn)足,且,使得曲線處的切線與直線AB平行,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案